
DYNAMIC ENGINEERING
150 DuBois, Suite C

Santa Cruz, CA 95060
(831) 457-8891 Fax (831) 457-4793

http://www.dyneng.com
sales@dyneng.com

Est. 1988

IpGeneric

WDF Driver Documentation

Developed with Windows Driver Foundation
Ver1.9

Manual Revision A 7/22/16

 Embedded Solutions Page 2 of 14

IpGeneric
WDF Device Driver for an
Unknown IP Module

Dynamic Engineering
150 DuBois, Suite C
Santa Cruz, CA 95060
831-457-8891
831-457-4793 FAX

This document contains information of proprietary interest
to Dynamic Engineering. It has been supplied in
confidence and the recipient, by accepting this material,
agrees that the subject matter will not be copied or
reproduced, in whole or in part, nor its contents revealed
in any manner or to any person except to meet the
purpose for which it was delivered.

Dynamic Engineering has made every effort to ensure that
this manual is accurate and complete. Still, the company
reserves the right to make improvements or changes in
the product described in this document at any time and
without notice. Furthermore, Dynamic Engineering
assumes no liability arising out of the application or use of
the device described herein.

The electronic equipment described herein generates,
uses, and can radiate radio frequency energy. Operation
of this equipment in a residential area is likely to cause
radio interference, in which case the user, at his own
expense, will be required to take whatever measures may
be required to correct the interference.

Dynamic Engineering’s products are not authorized for
use as critical components in life support devices or
systems without the express written approval of the
president of Dynamic Engineering.

This product has been designed to operate with IP Module
carriers and compatible user-provided equipment.
Connection of incompatible hardware is likely to cause
serious damage.

©2016 by Dynamic Engineering.
Trademarks and registered trademarks are owned by
their respective manufacturers.

 Embedded Solutions Page 3 of 14

Table of Contents

Introduction 4

Note 4

Driver Installation 4

Windows 7 Installation 5

Driver Startup 5

IO Controls 6
IOCTL_IP_GENERIC_GET_INFO 6
IOCTL_IP_GENERIC_SET_IP_CONTROL 7
IOCTL_IP_GENERIC_GET_IP_STATE 7
IOCTL_IP_GENERIC_SET_WR_MEM_OFFSET 8
IOCTL_IP_GENERIC_GET_WR_MEM_OFFSET 8
IOCTL_IP_GENERIC_SET_RD_MEM_OFFSET 8
IOCTL_IP_GENERIC_GET_RD_MEM_OFFSET 8
IOCTL_IP_GENERIC_PUT_DATA 9
IOCTL_IP_GENERIC_GET_DATA 9
IOCTL_IP_GENERIC_PUT_DATA64 10
IOCTL_IP_GENERIC_GET_DATA64 10
IOCTL_IP_GENERIC_REGISTER_EVENT 11
IOCTL_IP_GENERIC_ENABLE_INTERRUPT 11
IOCTL_IP_GENERIC_DISABLE_INTERRUPT 11
IOCTL_IP_GENERIC_FORCE_INTERRUPT 11
IOCTL_IP_GENERIC_GET_ISR_STATUS 12

Write 13

Read 13

WARRANTY AND REPAIR 14

Service Policy 14
Support 14

For Service Contact: 14

 Embedded Solutions Page 4 of 14

Introduction
IpGeneric is a Win7 device driver for any Industry-Pack (IP) module for which a more
specialized driver does not exist. This driver can control any IP module by mapping the
IO, MEM, and INT memory spaces so that they can be accessed by driver calls. A
separate Device Object controls each IP module, and a separate handle references
each Device Object. IO Control calls (IOCTLs) are used to configure the hardware and
read status information. ReadFile() and WriteFile() calls are used to transfer blocks of
data to and from the MEM space over the IP bus.

Note
This documentation will provide information about all calls made to the driver, and how
the driver interacts with the device for each of these calls. For more detailed
information on the hardware implementation, refer to the hardware manual for the
particular device being used.

Driver Installation
Warning: The appropriate IP carrier driver must be installed before any IP modules can
be detected by the system.

There are several files provided in each driver package. These files include
IpDevices.inf, IpDevices.cat, WdfCoInstaller01009.dll, IpGeneric.sys and several other
IP driver files (Ip*.sys). Also header files that define the driver API including IpPublic.h,
IpGenericPublic.h and (Ip*Public.h) files for several other IP module device drivers.

 Embedded Solutions Page 5 of 14

Windows 7 Installation
Copy IpDevices.inf, IpDevices.cat, WdfCoInstaller01009.dll, and all the IP device driver
files (*.sys) to a removable memory device, or other accessible location as preferred.

With one or more IP device installed in a supported IP module carrier, power-on the
host computer.
• Open the Device Manager from the control panel.
• Under Other devices there should be, for each valid IP module installed, a device

icon with an index appended carrier device name followed by an IP Slot designation
where the module is installed*.

• Right-click on the target device and select Update Driver Software.
• Insert the removable memory device prepared above if necessary.
• Select Browse my computer for driver software.
• Select Browse and navigate to the location where the appropriate files are stored.
• Select Next. The appropriate IP device driver or IpGeneric driver should now be

installed.
• Select Close to close the update window.

This process must be completed for each new IP device that is installed.

* If no IP devices are displayed, check to see that an IP Carrier Device is present in the
Device Manager and click on the Scan for hardware changes icon on the tool-bar or
select it in the Action menu.

IpPublic and IpGenericPublic.h are ‘C’ header files that define the Application Program
Interface (API) to the driver. These files are required at compile time by any application
that wishes to interface with the IpGeneric driver, but they are not needed for driver
installation. The device interface identifier (GUID) for the IpGeneric driver is defined in
IpGenericPublic.h.

Driver Startup
Once the driver has been installed it will start automatically when the system
recognizes the hardware.

A handle can be opened to a speci fic module by using the CreateFile() function call
and passing in the device name obtained from the system.

See the main.c file provided with the user test software for an example of obtaining a
device handle to a specific module.

 Embedded Solutions Page 6 of 14

IO Controls
The driver uses IO Control calls (IOCTLs) to configure the device. IOCTLs refer to a
single Device Object in the driver, which controls a single board. IOCTLs are called
using the Win32 function DeviceIoControl(), and passing in the handle to the device
opened with CreateFile(). IOCTLs generally have input parameters, output parameters,
or both. Often a custom structure is used.

BOOL DeviceIoControl(
 HANDLE hDevice, // Handle opened with CreateFile()
 DWORD dwIoControlCode, // Control code defined in API header file
 LPVOID lpInBuffer, // Pointer to input parameter
 DWORD nInBufferSize, // Size of input parameter
 LPVOID lpOutBuffer, // Pointer to output parameter
 DWORD nOutBufferSize, // Size of output parameter
 LPDWORD lpBytesReturned, // Pointer to return length parameter
 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped structure
); // used for asynchronous I/O

The IOCTLs defined in the IpGeneric driver are described below:

IOCTL_IP_GENERIC_GET_INFO
Function: Returns the current driver revision, instance number, module location and
other carrier information.
Input: None
Output: DRIVER_IP_DEVICE_INFO structure
Notes: This call does not access the hardware, only driver parameters. CarrierSwitch
returns the value of the 8-position IP carrier dip-switch when this IP was enumerated.
FirmwareRev is not valid for this driver. See the definition of
DRIVER_IP_DEVICE_INFO below.

 // Driver version and instance/slot information
typedef struct _DRIVER_IP_DEVICE_INFO {
 USHORT DriverRev;
 USHORT FirmwareRev;
 USHORT InstanceNum;
 UCHAR CarrierSwitch; // 0..0xFF
 UCHAR CarrierSlotNum; // 0..7 -> IP slots A, B, C, D, E, F, G or H
 BOOLEAN NewIpCntl; // New IP slot control bits
 WCHAR LocationString[IP_LOC_STRING_SIZE];
} DRIVER_IP_DEVICE_INFO, *PDRIVER_IP_DEVICE_INFO;

 Embedded Solutions Page 7 of 14

IOCTL_IP_GENERIC_SET_IP_CONTROL
Function: Sets the control configuration of the module’s IP slot.
Input: IP_SLOT_CONTROL structure
Output: None
Notes: Specifies the IP clock speed, data access and other control parameters for the
IP slot that the board occupies. See the definition of IP_SLOT_CONTROL below.

typedef struct _IP_SLOT_CONTROL {
 BOOLEAN Clock32Sel;
 BOOLEAN ClockDis;
 BOOLEAN ByteSwap;
 BOOLEAN WordSwap;
 BOOLEAN WrIncDis;
 BOOLEAN RdIncDis;
 UCHAR WrWordSel;
 UCHAR RdWordSel;
 BOOLEAN BsErrTmOutSel;
 BOOLEAN ActCountEn;
} IP_SLOT_CONTROL, *PIP_SLOT_CONTROL;

IOCTL_IP_GENERIC_GET_IP_STATE
Function: Returns the control configuration of the module’s IP slot plus interrupt and
bus error status.
Input: None
Output: IP_SLOT_STATE structure
Notes: Returns the slot control configuration from the previous call along with interrupt
enable and activity information. See the definition of IP_SLOT_STATE below.

typedef struct _IP_SLOT_STATE {
 BOOLEAN Clock32Sel;
 BOOLEAN ClockDis;
 BOOLEAN ByteSwap;
 BOOLEAN WordSwap;
 BOOLEAN WrIncDis;
 BOOLEAN RdIncDis;
 UCHAR WrWordSel;
 UCHAR RdWordSel;
 BOOLEAN BsErrTmOutSel;
 BOOLEAN ActCountEn;
 // Slot Status
 BOOLEAN IpInt0En;
 BOOLEAN IpInt1En;
 BOOLEAN IpBusErrIntEn;
 BOOLEAN IpInt0Actv;
 BOOLEAN IpInt1Actv;
 BOOLEAN IpBusError;
 BOOLEAN IpForceInt;
 BOOLEAN WrBusError;
 BOOLEAN RdBusError;
} IP_SLOT_STATE, *PIP_SLOT_STATE;

 Embedded Solutions Page 8 of 14

IOCTL_IP_GENERIC_SET_WR_MEM_OFFSET
Function: Sets the address offset for block write operations.
Input: Unsigned long integer
Output: None
Notes: Sets the address offset into the IP MEM space that will be used for WriteFile
calls.

IOCTL_IP_GENERIC_GET_WR_MEM_OFFSET
Function: Returns the address offset for block write operations.
Input: None
Output: Unsigned long integer
Notes: Returns the address offset into the IP MEM space that will be used for WriteFile
calls.

IOCTL_IP_GENERIC_SET_RD_MEM_OFFSET
Function: Sets the address offset for block read operations.
Input: Unsigned long integer
Output: None
Notes: Sets the address offset into the IP MEM space that will be used for ReadFile
calls.

IOCTL_IP_GENERIC_GET_RD_MEM_OFFSET
Function: Returns the address offset for block read operations.
Input: None
Output: Unsigned long integer
Notes: Returns the address offset into the IP MEM space that will be used for ReadFile
calls.

 Embedded Solutions Page 9 of 14

IOCTL_IP_GENERIC_PUT_DATA
Function: Writes a byte, word or long-word to the IP’s IO or MEM space.
Input: IP_GENERIC_DATA_WRITE structure
Output: None
Notes: This call is used to write data to the IO or MEM space. The structure contains
an address [offset] field, a length field (which can be 1, 2, or 4 corresponding to the
number of bytes in the target object) and a data field. For this call the space selector,
address, length and data fields must all be initialized and the structure passed to the
driver which performs the write operation. See for the definition of SPACE_SEL and
IP_GENERIC_DATA_WRITE below.

typedef enum _SPACE_SEL {
 IO_SPACE,
 MEM_SPACE,
} SPACE_SEL, *PSPACE_SEL;

typedef struct _IP_GENERIC_DATA_WRITE {
 SPACE_SEL MemIoSelect;
 ULONG Address;
 UCHAR Length;
 ULONG Data;
} IP_GENERIC_DATA_WRITE, *PIP_GENERIC_DATA_WRITE;

IOCTL_IP_GENERIC_GET_DATA
Function: Reads a byte, word or long-word from the IP’s IO or MEM space.
Input: IP_GENERIC_DATA_ADDRESS structure
Output: Unsigned long integer
Notes: This call is used to read data from the IO or MEM space. The
IP_GENERIC_DATA_ADDRESS structure contains a selector to indicate whether the
operation targets IO space or MEM space, an address [offset] field and a length field
(which can be 1, 2, or 4 corresponding to the number of bytes in the target object). For
this call the space selector, address and length fields must all be initialized and the
structure passed to the driver which performs the read operation and returns an
unsigned long integer that contains the data that was read. See the definition of
IP_GENERIC_DATA_ADDRESS below.

// IO data access structures
typedef struct _IP_GENERIC_DATA_ADDRESS {
 SPACE_SEL MemIoSelect;
 ULONG Address;
 UCHAR Length;
} IP_GENERIC_DATA_ADDRESS, *PIP_GENERIC_DATA_ADDRESS;

 Embedded Solutions Page 10 of 14

IOCTL_IP_GENERIC_PUT_DATA64
Function: Writes a byte, word, long word or 64-bit word to the IP’s IO or MEM space.
Input: IP_GENERIC_DATA64_WRITE structure
Output: None
Notes: This call is used to write data to the IO or MEM space. It is only valid in a 64-bit
operating environment when the carrier that the IP is mounted on supports 64-bit
writes. The IP_GENERIC_DATA64_WRITE structure contains a selector to indicate
whether the operation targets IO space or MEM space, an address [offset] field, a
length field (which can be 1, 2, 4 or 8 corresponding to the number of bytes in the
target object) and a data field. For this call the space selector, address, length, and
data fields must all be initialized and the structure is passed to the driver which
performs the write operation. See for the definition of IP_GENERIC_DATA64_WRITE
below.

typedef struct _IP_GENERIC_DATA64_WRITE {
 SPACE_SEL MemIoSelect;
 ULONG Address;
 UCHAR Length;
 ULONG64 Data;
} IP_GENERIC_DATA64_WRITE, *PIP_GENERIC_DATA64_WRITE;

IOCTL_IP_GENERIC_GET_DATA64
Function: Reads a byte, word, longword or 64-bit word from the IP’s IO or MEM space.
Input: IP_GENERIC_DATA_ADDRESS structure
Output: Unsigned long long integer (64-bit)
Notes: This call is used to read data from the IO or MEM space. It is only valid in a 64-
bit operating environment when the carrier that the IP is mounted on supports 64-bit
reads. The IP_GENERIC_DATA_ADDRESS structure contains a selector to indicate
whether the operation targets IO space or MEM space, an address [offset] field and a
length field (which can be 1, 2, 4 or 8 corresponding to the number of bytes in the
target object). For this call the space selector, address and length fields must be
initialized and the structure passed to the driver which performs the read operation and
returns an unsigned long long integer that contains the data that was read. See the
definition of IP_GENERIC_DATA_ADDRESS below.

typedef struct _IP_GENERIC_DATA_ADDRESS {
 SPACE_SEL MemIoSelect;
 ULONG Address;
 UCHAR Length;
} IP_GENERIC_DATA_ADDRESS, *PIP_GENERIC_DATA_ADDRESS;

 Embedded Solutions Page 11 of 14

IOCTL_IP_GENERIC_REGISTER_EVENT
Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle
returned from that call as the input to this IOCTL. The driver then obtains a system
pointer to the event and signals the event when an interrupt is serviced. The user
interrupt service routine waits on this event, allowing it to respond to the interrupt.

IOCTL_IP_GENERIC_ENABLE_INTERRUPT
Function: Sets the master interrupt enable bits to true.
Input: None
Output: None
Notes: Sets both of the IP slot interrupt enables, leaving all other bit values in the IP
slot control register the same. This IOCTL is used in the user interrupt processing
function to re-enable the interrupts after they were disabled in the driver interrupt
service routine. This allows that function to enable the interrupts without knowing the
particulars of the other configuration bits.

IOCTL_IP_GENERIC_DISABLE_INTERRUPT
Function: Sets the master interrupt enable bits to false.
Input: None
Output: None
Notes: Clears both of the IP slot interrupt enables, leaving all other bit values in the IP
slot control register the same. This IOCTL is used when interrupt processing is no
longer desired.

IOCTL_IP_GENERIC_FORCE_INTERRUPT
Function: Causes a system interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted if the master interrupt for the IP slot is
enabled. This IOCTL is used for development, to test interrupt processing.

 Embedded Solutions Page 12 of 14

IOCTL_IP_GENERIC_GET_ISR_STATUS
Function: Returns the interrupt status and interrupt vector.
Input: None
Output: IP_GENERIC_INT_STAT structure
Notes: Returns the interrupt vector and the contents of the interrupt status register that
were read in the last ISR call. The IP_GENERIC_INT_STAT structure, returned by this
call, contains these two values. See the definition of IP_GENERIC_INT_STAT below.

 // Interrupt status and vector
typedef struct _IP_GENERIC_INT_STAT {
 USHORT InterruptStatus;
 USHORT InterruptVector;
} IP_GENERIC_INT_STAT, *PIP_GENERIC_INT_STAT;

 Embedded Solutions Page 13 of 14

Write
Blocks of data to be written to the IP MEM space can use the WriteFile() call. The user
supplies the device handle, a pointer to the buffer containing the data, the number of
bytes to write, a pointer to a variable to store the amount of data actually transferred,
and an optional pointer to an Overlapped structure for performing asynchronous IO.
The number of bytes is checked to see if the transfer length plus the address offset will
overrun the end of memory. If this occurs, the length will be reduced accordingly. The
driver takes advantage of the carrier’s 32-bit double-write/64-bit quad write capability to
load two/four IP words with a single PCI/PCIe write until less than four/eight bytes
remain in the buffer. If the transfer is not to start at the beginning of the MEM space,
the IOCTL_IP_GENERIC_SET_WR_MEM_OFFSET call can be used to specify the
start address offset. See Win32 help files for details of the WriteFile() call.

Read
Blocks of data to be read from the IP MEM space can use the ReadFile() call. The user
supplies the device handle, a pointer to the buffer to store the data in, the number of
bytes to read, a pointer to a variable to store the amount of data actually transferred,
and a pointer to an optional Overlapped structure for performing asynchronous IO. The
number of bytes is checked to see if the transfer length plus the address offset will
overrun the end of memory. If this occurs, the length will be reduced accordingly. The
driver takes advantage of the carrier 32-bit double-read/64-bit quad read capability to
read two/four IP words with a single PCI/PCIe read until less than four/eight bytes
remain to be read. If the transfer is not to start at the beginning of the MEM space, the
IOCTL_IP_GENERIC_SET_RD_MEM_OFFSET call can be used to specify the start
address offset. See Win32 help files for the details of the ReadFile() call.

 Embedded Solutions Page 14 of 14

Warranty and Repair
Dynamic Engineering warrants this product to be free from defects under normal use and service and in
its original, unmodified condition, for a period of one year from the time of purchase. If the product is
found to be defective within the terms of this warranty, Dynamic Engineering's sole responsibility shall be
to repair, or at Dynamic Engineering's sole option to replace, the defective product.

Dynamic Engineering's warranty of and liability for defective products is limited to that set forth herein.
Dynamic Engineering disclaims and excludes all other product warranties and product liability, expressed
or implied, including but not limited to any implied warranties of merchantability or fitness for a particular
purpose or use, liability for negligence in manufacture or shipment of product, liability for injury to
persons or property, or for any incidental or consequential damages.

Dynamic Engineering’s products are not authorized for use as critical components in life support devices
or systems without the express written approval of the president of Dynamic Engineering.

Service Policy
Before returning a product for repair, verify as well as possible that the driver is at fault. The driver has
gone through extensive testing and in most cases it will be a “cockpit error” rather than an error with the
driver. When you are sure or at least willing to pay to have someone help then call the Customer
Service Department and arrange to speak with an engineer. We will work with you to determine the
cause of the issue. If the issue is one of a defective driver we will correct the problem and provide an
updated module(s) to you [no cost]. If the issue is of the customer’s making [anything that is not the
driver] the engineering time will be invoiced to the customer. Pre-approval may be required in some
cases depending on the customer’s invoicing policy.

Support
The software described in this manual is provided at no cost to cl ients who have
purchased the corresponding hardware. Minimal support is included along with the
documentation. For help with integration into your project please contact
sales@dyneng.com for a support contract. Several options are available. With a
contract in place Dynamic Engineers can help with system debugging, special software
development, or whatever you need to get going.

For Service Contact:
Customer Service Department
Dynamic Engineering
150 DuBois, Suite C
Santa Cruz, CA 95060
(831) 457-8891
(831) 457-4793 fax
support@dyneng.com

All information provided is Copyright Dynamic Engineering

