
DYNAMIC ENGINEERING
150 DuBois St. Suite C Santa Cruz CA 95060

831-457-8891 Fax 831-457-4793
 http://www.dyneng.com
sales@dyneng.com

 Est. 1988

Software User’s Guide
(Linux)

PMC-BiSerial-VI-UART

8-Channel UART Interface

 Embedded Solutions Page 2

This document contains information of
proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the
recipient, by accepting this material, agrees that
the subject matter will not be copied or
reproduced, in whole or in part, nor its contents
revealed in any manner or to any person except
to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to
ensure that this manual is accurate and
complete. Still, the company reserves the right
to make improvements or changes in the
product described in this document at any time
and without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of
the application or use of the device described
herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this equipment in
a residential area is likely to cause radio
interference, in which case the user, at his own
expense, will be required to take whatever
measures may be required to correct the
interference.

Dynamic Engineering’s products are not
authorized for use as critical components in life
support devices or systems without the express
written approval of the president of Dynamic
Engineering.

Connection of incompatible hardware is likely to
cause serious damage.

©2017 by Dynamic Engineering.
Other trademarks and registered trademarks are owned by their
respective manufactures.
Revised 08/17/2017

PMC-BiSerial-VI UART

Dynamic Engineering
150 DuBois St Suite C
Santa Cruz, CA 95060
831-457-8891
831-457-4793 FAX

 Embedded Solutions Page 3

Product Description .. 4	

Software Description .. 4	
Modes of operation ... 4	
PLL Programming .. 5	

Installation ... 6	
Application Programming model .. 6	
Sample application .. 6	

Invocation parameters ... 7	
Warranty and Repair ... 8	
Service Policy ... 8	

Out of Warranty Repairs ... 8	
For Service Contact: ... 8	

 Embedded Solutions Page 4

Product Description
The PMC-BiSerial-VI PMC is an eight channel, full duplex UART interface card
supporting various modes of operation. All channels are supported with their
own DMA engines

For a detailed description of the hardware including register definitions, see HW
User Manual, PmcBis6UartHwManA8.

Software Description
The driver supports full duplex operation on all 8 channels.

A default configuration is applied when ports are opened for the first time. These
default settings are defined in the driver header file, de_BiSerUart.h. The default
I/O port config setting is named de_default_pt_config. The default config
parameters can be customized for a particular application, and the driver
recompiled. This may eliminate the need for invoking the config ioctl.

Applicable I/O configuration parameters include blocking timeout, baud-rate,
mode, parity, flow control, inter-char timer (utilized for packet modes), and
various UART options (data size, stop bits, and terminations). Blocking timeout
provides a mechanism to timeout on blocking operations.

Default I/O configuration is as follows: Blocking timeout on reads = 5 sec. (if
opened as blocking), 115200 baud-rate, packed mode of operation, even parity,
flow control enabled (CTS/RTS), auto compute inter-char timer based upon
baud-rate, 8 bit data, 1 stop bit, terminate CTS and Rx signals.

The version of this driver is v1.0.2. The driver has been validated on an i7
Ubuntu server running 3.8.0-44 kernel (64 bit) SMP and embedded target P2020
running 3.0.48 kernel (32 bit) SMP.

Modes of operation
The HW and SW support 5 modes of operation on a port by port basis, all modes
accept (writes) and return (reads) a packed byte stream. Please note I/O
limitations between ports populating different platform types (little endian to/from
big endian). If required for specific customer applications, these limitations can
be addressed/resolved for an additional fee.

 Embedded Solutions Page 5

• Upacked

Prepends or strips 3 fill bytes for each data byte, max frame size = 255
bytes. Size does not have to be a multiple of 4 bytes. I/O between
big/little endian platforms not supported.

• Packed

Max frame size = 1020 bytes, size must be a multiple of 4 bytes

• Packet

Packed data, max frame size = 1020 bytes, size does not have to be a
multiple of 4 bytes, however for non-aligned receive packets least
significant bytes are filled with zeros to force alignment. Non-aligned (not
a multiple of 4 bytes) I/O between big/little endian platform not supported.

• Alternate Packet

Prepends/strips control byte for every 3 bytes of data max frame size =
765 bytes. Does not have to be a multiple of 4 bytes, and received packet
will contain no fill bytes. This mode is not supported on big endian
platforms.

• Test

Raw mode of operation supporting test.

When operating in either of the packet modes, a read will return the next
available packed irrespective of size. Thus, reads should be issued with a size of
DE_MAX_FRAME. Please see HW manual for further discussion of
advantages/disadvantages of each mode.

PLL Programming
The PLL can be programmed with a custom PLL file generated by the Cypress
CyberClocks tool. PLL frequencies of up to 64 Mhz are supported. The PLL
must be programmed prior to specifying the PLL as the clock for baud-rate
generation (e.g. port_cfg.br_clk_src = 1) during port configuration. PLL clocks A-
D are assigned as follows: CLKA - ports 0 & 1, CLKB - ports 2 & 3, CLKC - ports
4 & 5, CLKD – ports 6 & 7. Code for reading jed files generated by Cypress tool
can be found in the application de_IoctlApp.c. The application may be executed
to load the PLL file, or the code may be ported to a customer application.

 Embedded Solutions Page 6

Installation
1) Copy de_BiSerUart.c and de_BiSerUart.h to your module build directory.
Invoke the system “make.” A makefile for this module has been included in the
release tar-ball.
2) Copy the resulting de_BiSerUart.ko module to the target
platform/directory.
3) Copy the startup script bnm to the target.
4) Invoke the script (./bnm), it will create the devices required by the driver
and performs an insmod of the module. You may invoke this script from the
systems rc.local file as well.

Application Programming model
After a port is opened, it may be configured for the desired mode of operation via
the DE_CONFIG_PT ioctl. Both blocking and non-blocking modes of operation
are supported. This behavior is set via the standard file flags upon open.

Please see de_BiSerUart.h for details of the parameters for this and other
supported ioctls.

Sample application
Three sample applications de_IoApp.c, de_IoAppS.c, de_IoctlApp.c are provided
to demonstrate configuration, ioctl invocation, and I/O in the supported modes.
Various modes of operation and options maybe validated/demonstrated by
changing port configuration parameters in the application and recompiling.

de_IoApp.c is a board to board test. It requires two boards to be installed in the
platform and connected via a board-to-board test fixture. A minimum of two
instances must be invoked, first the reader, then the writer within 5 seconds. The
applications run asynchronously to one another. Port 0 is connected to port 8,
port 1 to port 9, and so on via test fixture.

1) If utilizing custom PLL file, modify line 102 to reference custom jed file:

if (xlate (“your_file_name.jed”, pll_cfg.data))
 Compile Ioctl App:
 gcc -Wall -o dyn_ioctl de_IoctlApp.c
 Invoke ioctl app for each board:
 dyn_ioctl 0 1 // Any port on 1st board.
 dyn_ioctl 8 1 // Any port on 2nd board.

 Embedded Solutions Page 7

2) Compile de_IoApp for your platform.
gcc -DMODE=1 -Wall –o dyn_io de_IoApp.c
 See de_BiSerUart.h for mode definitions (de_mode_t)
The app should compile without warnings, it is assumed
de_BiSerUart.h is resident in the same directory as the application
for this example.

de_IoAppS.c is a single board test. Ports are looped back to themselves
externally via single board test fixture. The application first writes to the specified
port, and then reads received data. Data integrity is then validated.

1) Execute step 1 from above if necessary.
2) Compile de_IoAppS for your platform.

gcc -DMODE=1 -Wall –o dyn_ioS de_IoAppS.c
 See de_BiSerUart.h for mode definitions (de_mode_t)
The app should compile without warnings, it is assumed
de_BiSerUart.h is resident in the same directory as the application
for this example.

Invocation parameters
I/O application invocation is as follows:

dyn_io - 2 board test

./dyn_io 1 0 baud-rate frame_len num_iterations //(reader, port 0, board 1)

./dyn_io 0 8 baud-rate frame_len num_iterations //(writer, port 8, board 2)

The first parameter specifies reader/writer. The second parameter is port
number, third parameter is baud-rate. Frame length is specified in bytes. Data is
validated upon reception. Application will execute for num_iterations, or until
terminated due to an error or interrupted via <CTRL-C>.

dyn_ioS - single board test

./dyn_ioS 0 baud-rate frame_len num_iterations //(port 0, board 1)

The first parameter specifies port. The second parameter is baud-rate followed
by frame length in bytes. Data is validated upon reception. Application will
executedfor num_iterations, or until terminated due to an error or interrupted via
<CTRL-C>.

 Embedded Solutions Page 8

Support Contract
Dynamic Drivers are provided AS-IS and sometimes our clients need a little help.
Please refer to the support contract page on our website for options about getting
help with your driver use and SW development.

http://www.dyneng.com/TechnicalSupportFromDE.pdf

Warranty and Repair
Please refer to the warranty page on our website for the current warranty offered
and options.

http://www.dyneng.com/warranty.html

Service Policy
Before returning a product for repair, verify as well as possible that the suspected
unit is at fault. Then call the Customer Service Department for a RETURN
MATERIAL AUTHORIZATION (RMA) number. Carefully package the unit, in the
original shipping carton if this is available, and ship prepaid and insured with the
RMA number clearly written on the outside of the package. Include a return
address and the telephone number of a technical contact. For out-of-warranty
repairs, a purchase order for repair charges must accompany the return.
Dynamic Engineering will not be responsible for damages due to improper
packaging of returned items. For service on Dynamic Engineering Products not
purchased directly from Dynamic Engineering contact your reseller. Products
returned to Dynamic Engineering for repair by other than the original customer
will be treated as out-of-warranty.
Out of Warranty Repairs
Software support contracts are available to update, add features, change for
different revisions of OS etc. Please contact Dynamic Engineering for these
options.

For Service Contact:
Customer Service Department
Dynamic Engineering
150 DuBois St. Suite C
Santa Cruz, CA 95060
831-457-8891
831-457-4793 fax
InterNet Address support@dyneng.com

