
DYNAMIC ENGINEERING
150 DuBois St., Suite B/C Santa Cruz, CA 95060

831-457-8891
https://www.dyneng.com

sales@dyneng.com
Est. 1988

IP-Parallel-TTL-PATT
“IpParTtlPatt”

Windows 10 WDF Driver Documentation

Developed with Windows Driver Foundation Ver1.9

11/28/22
Manual Revision 1p0

Corresponding Hardware: Revision 04
10-2001-0104

FLASH revision 1p1

 Embedded Solutions Page 2 of 27

IpParTtlPatt

Dynamic Engineering
150 DuBois St., Suite B/C
Santa Cruz, CA 95060
831-457-8891

This document contains information of proprietary interest to
Dynamic Engineering. It has been supplied in confidence and the
recipient, by accepting this material, agrees that the subject
matter will not be copied or reproduced, in whole or in part, nor its
contents revealed in any manner or to any person except to meet
the purpose for which it was delivered.

Dynamic Engineering has made every effort to ensure that this
manual is accurate and complete. Still, the company reserves the
right to make improvements or changes in the product described
in this document at any time and without notice. Furthermore,
Dynamic Engineering assumes no liability arising out of the
application or use of the device described herein.

The electronic equipment described herein generates, uses, and
can radiate radio frequency energy. Operation of this equipment
in a residential area is likely to cause radio interference, in which
case the user, at his own expense, will be required to take
whatever measures may be required to correct the interference.

Dynamic Engineering’s products are not authorized for use as
critical components in life support devices or systems without the
express written approval of the president of Dynamic
Engineering.

This product has been designed to operate with IP Module
carriers and compatible user-provided equipment. Connection of
incompatible hardware is likely to cause serious damage.

©2022 by Dynamic Engineering.
Trademarks and registered trademarks are owned by their
respective manufactures.

 Embedded Solutions Page 3 of 27

INTRODUCTION 5

Driver Installation 7

Windows 10/11 Installation 7

Driver Startup 8

IO Controls 8
IOCTL_IP_PARttlPATT_GET_INFO 9
IOCTL_IP_PARttlPATT_SET_IP_CONTROL 10
IOCTL_IP_PARttlPATT_GET_IP_STATE 11
IOCTL_IP_PARttlPATT_REGISTER_EVENT 11
IOCTL_IP_PARttlPATT_ENABLE_INTERRUPT 12
IOCTL_IP_PARttlPATT_DISABLE_INTERRUPT 12
IOCTL_IP_PARttlPATT_FORCE_INTERRUPT 12
IOCTL_IP_PARttlPATT_CLR_FORCE_INTERRUPT 12
IOCTL_IP_PARttlPATT_SET_VECTOR 12
IOCTL_IP_PARttlPATT_GET_VECTOR 12
IOCTL_IP_PARttlPATT_GET_ISR_STATUS 13
IOCTL_IP_PARttlPATT_SET_MASTER_INT_EN 13
IOCTL_IP_PARttlPATT_CLR_MASTER_INT_EN 13
IOCTL_IP_PARttlPATT_SET_BASE_CONFIG 14
IOCTL_IP_PARttlPATT_GET_BASE_CONFIG 14
IOCTL_IP_PARttlPATT_GET_STATUS 14
IOCTL_IP_PARttlPATT_GET_REVISION 14
IOCTL_IP_PARttlPATT_SET_SLOTSWITCH 15
IOCTL_IP_PARttlPATT_GET_SLOTSWITCH 15
IOCTL_IP_PARttlPATT_GET_IP_ID 15
IOCTL_IP_PARttlPATT_SET_DATA_OUT 15
IOCTL_IP_PARttlPATT_GET_DATA_OUT 15
IOCTL_IP_PARttlPATT_SET_DIR 16
IOCTL_IP_PARttlPATT_GET_DIR 16
IOCTL_IP_PARttlPATT_SET_POLARITY 16
IOCTL_IP_PARttlPATT_GET_POLARITY 16
IOCTL_IP_PARttlPATT_SET_EDGE_LEVEL 16
IOCTL_IP_PARttlPATT_GET_EDGE_LEVEL 17
IOCTL_IP_PARttlPATT_SET_INT_EN 17
IOCTL_IP_PARttlPATT_GET_INT_EN 17
IOCTL_IP_PARttlPATT_READ_DIRECT 17
IOCTL_IP_PARttlPATT_SET_COS_RISING_STAT 17
IOCTL_IP_PARttlPATT_GET_COS_RISING_STAT 18
IOCTL_IP_PARttlPATT_SET_COS_FALLING_STAT 18
IOCTL_IP_PARttlPATT_GET_COS_FALLING_STAT 18

Table of Contents

 Embedded Solutions Page 4 of 27

IOCTL_IP_PARttlPATT_SET_COS_RISING_EN 18
IOCTL_IP_PARttlPATT_GET_COS_RISING_EN 18
IOCTL_IP_PARttlPATT_SET_COS_FALLING_EN 19
IOCTL_IP_PARttlPATT_GET_COS_FALLING_EN 19
IOCTL_IP_PARttlPATT_READ_FILTERED 19
IOCTL_IP_PARttlPATT_SET_COSHALFDIV 19
IOCTL_IP_PARttlPATT_GET_COSHALFDIV 19
IOCTL_IP_PARttlPATT_SET_COMMAND 20
IOCTL_IP_PARttlPATT_GET_COMMAND 20
IOCTL_IP_PARttlPATT_GET_DATA_CNT 21
IOCTL_IP_PARttlPATT_TEST_SET_0 21
IOCTL_IP_PARttlPATT_TEST_GET_0 21
IOCTL_IP_PARttlPATT_TEST_SET_1 21
IOCTL_IP_PARttlPATT_TEST_GET_1 21
IOCTL_IP_PARttlPATT_LOAD_PATTERN 22
IOCTL_IP_PARttlPATT_READ_PATTERN 22
IOCTL_IP_PARttlPATT_SET_PATTHALFDIV 22
IOCTL_IP_PARttlPATT_GET_PATTHALFDIV 22
IOCTL_IP_PARttlPATT_WRITEFILE_STD 22
IOCTL_IP_PARttlPATT_READFILE_STD 23
IOCTL_IP_PARttlPATT_WRITEFILE_ENH 23
IOCTL_IP_PARttlPATT_READFILE_ENH 23
IOCTL_IP_PARttlPATT_LOAD_START 23
IOCTL_IP_PARttlPATT_READ_START 23
IOCTL_IP_PARttlPATT_LOAD_STOP 24
IOCTL_IP_PARttlPATT_READ_STOP 24
IOCTL_IP_PARttlPATT_LOAD_COUNT 24
IOCTL_IP_PARttlPATT_READ_COUNT 24
IOCTL_IP_PARttlPATT_READ_RxFIFO 24
IOCTL_IP_PARttlPATT_READ_RxFIFOCnt 24
IOCTL_IP_PARttlPATT_LOAD_SLOPE 25
IOCTL_IP_PARttlPATT_READ_SLOPE 25
IOCTL_IP_PARttlPATT_LOAD_HCOUNT 25
IOCTL_IP_PARttlPATT_READ_HCOUNT 25
IOCTL_IP_PARttlPATT_LOAD_RXFIFOAFL 25
IOCTL_IP_PARttlPATT_READ_RXFIFOAFL 26

WARRANTY AND REPAIR 27

Service Policy 27
Support 27

For Service Contact: 27

 Embedded Solutions Page 5 of 27

Introduction
The IpParTtlPatt driver is a Windows device driver for IP-Parallel-TTL-PATT Industry-
pack (IP) module from Dynamic Engineering. The module provides Pattern Generator
and GPIO ports. This driver was developed with the Windows Driver Foundation version
1.9 (WDF) from Microsoft, specifically the Kernel-Mode Driver Framework (KMDF).

The IpParTtlPatt software package has two parts. The driver for Windows® 10/11 OS,
and the User Application “UserAp” executable.

The driver is delivered electronically. The files supplied are installed into the client
system to allow access to the hardware. The UserAp code is delivered in source form
[C] and is for the purpose of providing a reference to using the driver.

UserAp is a stand-alone code set with a simple, and powerful menu plus a series of
“tests” that can be run on the installed hardware. Each of the tests execute calls to the
driver, pass parameters and structures, and get results back. With the sequence of
calls demonstrated, the functions of the hardware are utilized for loop-back testing. The
software is used for manufacturing test at Dynamic Engineering.
The test software can be ported to your application to provide a running start. It is
recommended to port the Register tests to your application to get started. The tests are
simple and will quickly demonstrate the end-to-end operation of your application making
calls to the driver and interacting with the hardware.

The menu allows the user to add tests, to run sequences of tests, to run until a failure
occurs and stop or to continue, to program a set number of loops to execute and more.
The user can add tests to the provided test suite to try out application ideas before
committing to your system configuration. In many cases the test configuration will allow
faster debugging in a more controlled environment before integrating with the rest of the
system. The test suite is designed to accommodate up to 5 boards. The number of
boards can be expanded. See Main.c to increase the number of handles.

The hardware manual defines the pinout, the bitmaps and detailed configurations for
each feature of the design. The driver handles all aspects of interacting with the
hardware. For added explanations about what some of the driver functions do, please
refer to the hardware manual.

We strive to make a useable product. If you have suggestions for extended features,
special calls for particular set-ups or whatever please share them with us.

When the IpParTtlPatt board is recognized by the IP Carrier Driver, the carrier driver will
start the IpParTtlPatt driver which will create a device object for the board. If more than

 Embedded Solutions Page 6 of 27

one is found additional copies of the driver are loaded. The carrier driver will load the
info storage register on the IpParTtlPatt with the carrier switch setting and the slot
number of the IpParTtlPatt device. From within the IpParTtlPatt driver the user can
access the switch and slot information to determine the specific device being accessed
when more than one is installed.

The reference software application has a loop to check for devices. The number of
devices found, the locations, and device count are printed out at the top of the menu.

IO Control calls (IOCTLs) are used to configure the board and read status. Read and
Write calls are used to move data in and out of the device.
Note
This documentation will provide information about all calls made to the drivers, and how
the drivers interact with the device for each of these calls. For more detailed
information on the hardware implementation, refer to the IpParTtlPatt user manual (also
referred to as the hardware manual).

 Embedded Solutions Page 7 of 27

Driver Installation
There are several files provided in each IP driver package. These files include
IpParTtlPatt.sys, IpParTtlPatt.cat, IpParTtlPatt.inf.

Please note: Your carrier driver may need to be updated to use the IP module. The list
of IP modules is compiled along with the driver and due to signing requirements.

IpParTtlPatt_Public.h and IpPublic.h are C header files that define the Application
Program Interface (API) to the driver. These files are required at compile time by any
application that wishes to interface with the driver, but are not needed for driver
installation. IpPublic.h is supplied with the carrier driver. IpParTtlPatt_Public.h. is
supplied with UserAp.

Warning: The appropriate IP carrier driver must be installed before any IP modules can
be detected by the system.

Windows 10/11 Installation
Copy the supplied system files to a folder of your choice.

With the IP hardware installed, power-on the host computer.

• Open the Device Manager from the control panel.
• Under Other devices there should be an item for each IP module installed on the IP

carrier. The label for a module installed in the first slot of the first PCIe3IP carrier would
read PcieCar0 IP Slot A*.

• Right-click on the first device and select Update Driver Software.
• Insert the removable memory device prepared above if necessary.
• Select Browse my computer for driver software.
• Select Browse and navigate to the memory device or other location prepared above.
• Select Next. The IpParTtlPatt device driver should now be installed.
• Select Close to close the update window.
• Right-click on the remaining IP slot icons and repeat the above procedure as
necessary.

* If the [Carrier] IP Slot [x] devices are not displayed, click on the Scan for hardware
changes icon on the Device Manager tool-bar.

 Embedded Solutions Page 8 of 27

Driver Startup
Once the driver has been installed it will start automatically when the system recognizes
the hardware.

A handle can be opened to a specific board by using the CreateFile() function call and
passing in the device name obtained from the system.

The interface to the device is identified using a globally unique identifier (GUID), which
is defined in IpParTtlPatt_Public.h.

The main.c file provided with the user test software can be used as an example to show
how to obtain a handle to an IpParTtlPatt device.

IO Controls
The driver uses IO Control calls (IOCTLs) to configure the device. IOCTLs refer to a
single Device Object, which controls a single module. IOCTLs are called using the
function DeviceIoControl() (see below), and passing in the handle to the device opened
with CreateFile() (see above). IOCTLs generally have input parameters, output
parameters, or both. Often a custom structure is used.

BOOL DeviceIoControl(
 HANDLE hDevice, // Handle opened with CreateFile()
 DWORD dwIoControlCode, // Control code defined in API header file
 LPVOID lpInBuffer, // Pointer to input parameter
 DWORD nInBufferSize, // Size of input parameter
 LPVOID lpOutBuffer, // Pointer to output parameter
 DWORD nOutBufferSize, // Size of output parameter
 LPDWORD lpBytesReturned, // Pointer to return length parameter
 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped structure
); // used for asynchronous I/O

 Embedded Solutions Page 9 of 27

IOCTLs defined for the IpBis6Gpio driver are described below:

IOCTL_IP_PARttlPATT_GET_INFO
Function: Returns the driver and firmware revisions, module instance number and
location and other information.
Input: None
Output: DRIVER_IP_DEVICE_INFO structure
Notes: This call does not access the hardware, only stored driver parameters.
NewIpCntl indicates that the module’s carrier has expanded slot control capabilities.
See the definition of DRIVER_IP_DEVICE_INFO below.

typedef struct _DRIVER_IP_DEVICE_INFO {
 UCHAR DriverRev; // Driver revision
 UCHAR FirmwareRev; // Firmware major revision
 UCHAR FirmwareRevMin; // Firmware minor revision
 UCHAR InstanceNum; // Zero-based device number
 UCHAR CarrierSwitch; // 0..0xFF
 UCHAR CarrierSlotNum; // 0..7 -> IP slots A, B, C, D, E, F, G or H
 UCHAR CarDriverRev; // Carrier driver revision
 UCHAR CarFirmwareRev; // Carrier firmware major revision
 UCHAR CarFirmwareRevMin;// Carrier firmware minor revision
 UCHAR CarCPLDRev; //**Used for PCIe carriers only**0xFF for
others
 UCHAR CarCPLDRevMin; //**Used for PCIe carriers only**0xFF for
others
 BOOLEAN Ip32MCapable; // IP capable of both 8MHz and 32MHz operation
 BOOLEAN NewIpCntl; // New IP slot control interface
 WCHAR LocationString[IP_LOC_STRING_SIZE];
} DRIVER_IP_DEVICE_INFO, *PDRIVER_IP_DEVICE_INFO;

 Embedded Solutions Page 10 of 27

IOCTL_IP_PARttlPATT_SET_IP_CONTROL
Function: Sets various control parameters for the IP slot the module is installed in.
Input: IP_SLOT_CONTROL structure
Output: None
Notes: Controls the IP clock speed, interrupt enables and data manipulation options for
the IP slot that the board occupies. See the definition of IP_SLOT_CONTROL below.
For more information refer to the IP carrier hardware manual.

typedef struct _IP_SLOT_CONTROL {
 BOOLEAN Clock32Sel;
 BOOLEAN ClockDis;
 BOOLEAN ByteSwap;
 BOOLEAN WordSwap;
 BOOLEAN WrIncDis;
 BOOLEAN RdIncDis;
 UCHAR WrWordSel;
 UCHAR RdWordSel;
 BOOLEAN BsErrTmOutSel;
 BOOLEAN ActCountEn;
} IP_SLOT_CONTROL, *PIP_SLOT_CONTROL;

 Embedded Solutions Page 11 of 27

IOCTL_IP_PARttlPATT_GET_IP_STATE
Function: Returns control/status information for the IP slot the module is installed in.
Input: None
Output: IP_SLOT_STATE structure
Notes: Returns the slot control parameters set in the previous call as well as status
information for the IP slot that the board occupies. See the definition of
IP_SLOT_STATE below.

typedef struct _IP_SLOT_STATE {
 BOOLEAN Clock32Sel;
 BOOLEAN ClockDis;
 BOOLEAN ByteSwap;
 BOOLEAN WordSwap;
 BOOLEAN WrIncDis;
 BOOLEAN RdIncDis;
 UCHAR WrWordSel;
 UCHAR RdWordSel;
 BOOLEAN BsErrTmOutSel;
 BOOLEAN ActCountEn;
 // Slot Status
 BOOLEAN IpInt0En;
 BOOLEAN IpInt1En;
 BOOLEAN IpBusErrIntEn;
 BOOLEAN IpInt0Actv;
 BOOLEAN IpInt1Actv;
 BOOLEAN IpBusError;
 BOOLEAN IpForceInt;
 BOOLEAN WrBusError;
 BOOLEAN RdBusError;
} IP_SLOT_STATE, *PIP_SLOT_STATE;.

IOCTL_IP_PARttlPATT_REGISTER_EVENT
Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to Event object
Output: none
Notes: The caller creates an event with CreateEvent() and supplies the handle returned
from that call as the input to this IOCTL. The driver then obtains a system pointer to the
event and signals the event when an interrupt is serviced. The user interrupt service
routine waits on this event, allowing it to respond to the interrupt. In order to un-register
the event, set the event handle to NULL while making this call.

 Embedded Solutions Page 12 of 27

IOCTL_IP_PARttlPATT_ENABLE_INTERRUPT
Function: Sets the Carrier interrupt enable.
Input: None
Output: None
Notes: Sets the interrupt enable on the carrier. Does not affect the IP Module Master
Interrupt Enable

IOCTL_IP_PARttlPATT_DISABLE_INTERRUPT
Function: Clears the carrier interrupt enable.
Input: None
Output: None
Notes: Clears the interrupt enable on the carrier. Does not affect the IP Module Master
Interrupt Enable. This IOCTL is used when interrupt processing is no longer desired.

IOCTL_IP_PARttlPATT_FORCE_INTERRUPT
Function: Causes a system interrupt to occur.
Input: none
Output: none
Notes: Sets Force Interrupt bit in Base Register. Also requires MasterInterruptEn and
Carrier level interrupt to be enabled. This IOCTL is used for development, to test
interrupt processing.

IOCTL_IP_PARttlPATT_CLR_FORCE_INTERRUPT
Function: Clear Force Interrupt Bit
Input: none
Output: none
Notes: Clears Force Interrupt bit in Base Register.

IOCTL_IP_PARttlPATT_SET_VECTOR
Function: Writes an 8 bit value to the interrupt vector register.
Input: UCHAR
Output: None
Notes: Required when used in non-auto-vectored systems.

IOCTL_IP_PARttlPATT_GET_VECTOR
Function: Returns the current interrupt vector value.
Input: none
Output: UCHAR
Notes:

 Embedded Solutions Page 13 of 27

IOCTL_IP_PARttlPATT_GET_ISR_STATUS
Function: Returns the interrupt status, vector read in the last ISR, and the filtered data
bits.
Input: none
Output: IP_BIS6_GPIO_ISR_STAT structure
Notes: The status contains the contents of the Interrupt register, GPIO Direct Data,
Rising status, and Falling Status from the ISR.

// Interrupt status and vector
typedef struct _IP_PARttlPATT_ISR_STAT {
 USHORT InterruptStatus;
 USHORT DirectBits;
 USHORT RisingBits;
 USHORT FallingBits;
} IP_PARttlPATT_ISR_STAT, *PIP_PARttlPATT_ISR_STAT;

IOCTL_IP_PARttlPATT_SET_MASTER_INT_EN
Function: Sets the Master Interrupt enable on the IP module.
Input: None
Output: None
Notes: Sets the master interrupt enable, leaving all other bit values in the base register
unchanged. This IOCTL is used in the user interrupt processing function to re-enable
the interrupts after they were disabled in the driver ISR. This allows the driver to set the
master interrupt enable without knowing the state of the other base configuration bits.

IOCTL_IP_PARttlPATT_CLR_MASTER_INT_EN
Function: Clears the master interrupt enable.
Input: None
Output: None
Notes: Clears the master interrupt enable, leaving all other bit values in the base
register unchanged. This IOCTL is used when interrupt processing is no longer desired.

 Embedded Solutions Page 14 of 27

IOCTL_IP_PARttlPATT_SET_BASE_CONFIG
Function: Sets base control register configuration.
Input: IP_PARttlPATT_BASE_CONFIG structure
Output: none
Notes: See the definition of IP_PARttlPATT_BASE_CONFIG below. Bit definitions can
be found in the ‘_Base’ section under Register Definitions in the Hardware manual.

typedef struct _IP_PARttlPATT_BASE_CONFIG
{
 BOOLEAN Reset; // Set to Reset, must be Cleared after for normal
operation
 BOOLEAN PattIntEn; // Set to enable Pattern Function Interrupt
 BOOLEAN RxAflIntEn; // Set to enable Rx FIFO Almost Full Interrupt
 BOOLEAN RxEnable; // Set to enable reception of Data In into Rx
FIFO based on External Clock
 BOOLEAN LoopBack; // Set to enable TX-RX FIFO loop-back
 BOOLEAN TestIO; // Set to enable Test Registers onto output bus
} IP_PARttlPATT_BASE_CONFIG, * PIP_PARttlPATT_BASE_CONFIG;

IOCTL_IP_PARttlPATT_GET_BASE_CONFIG
Function: Returns the base control configuration.
Input: none
Output: IP_PARttlPATT_BASE_CONFIG structure
Notes: See the definition of IP_PARttlPATT_BASE_CONFIG above. Bit definitions can
be found in the ‘_Base’ section under Register Definitions in the Hardware manual.

IOCTL_IP_PARttlPATT_GET_STATUS
Function: Returns the status bits in the status register.
Input: none
Output: USHORT
Notes:. Bit definitions can be found in the in the Hardware manual. The grouped
Rising, Falling, and Filtered Data interrupt requests are available in this register. i.e. if
any Rising Status bit and associated interrupt enable bit are set, the Rising status is set.

IOCTL_IP_PARttlPATT_GET_REVISION
Function: Returns the Module FLASH minor and major revisions.
Input: None
Output: USHORT
Notes: See the definition of Bit definitions can be found under the in the Hardware
manual. Repeated here: 15-8 = Major, 7-0 = Minor.

 Embedded Solutions Page 15 of 27

IOCTL_IP_PARttlPATT_SET_SLOTSWITCH
Function: Write data to the SlotSwitch register.
Input: USHORT
Output: none
Notes: Definition can be found in the in the Hardware manual. Used to store the IP
location by carrier driver during initialization. Later read by IP driver and stored into a
structure. User R/W without consequence.

IOCTL_IP_PARttlPATT_GET_SLOTSWITCH
Function: Read data from the SlotSwitch register.
Input: none
Output: USHORT
Notes: Definition can be found in the Hardware manual.

IOCTL_IP_PARttlPATT_GET_IP_ID
Function: Returns IP module information.
Input: None
Output: IP-IDENTITY structure
Notes: See the definition of I IP_IDENTITY below.

typedef struct _IP_IDENTITY {
 UCHAR IpManuf;
 UCHAR IpModel;
 UCHAR IpRevision;
 UCHAR IpCustomer;
 USHORT IpVersion;
} IP_IDENTITY, *PIP_IDENTITY;

IOCTL_IP_PARttlPATT_SET_DATA_OUT
Function: Write a value to the Tx Data registers.
Input: USHORT
Output: none
Notes: Definition can be found in the in the Hardware manual. 15-0 correspond to the
IO bits 47-32. When the corresponding Direction bit is also set, the state of the bit is
driven.

IOCTL_IP_PARttlPATT_GET_DATA_OUT
Function: Read from the Tx Data register.
Input: none
Output: USHORT value of Tx Data Register
Notes: Definition can be found in the in the Hardware manual.

 Embedded Solutions Page 16 of 27

IOCTL_IP_PARttlPATT_SET_DIR
Function: Write a value to the direction register.
Input: USHORT
Output: none
Notes: Definition can be found in the ‘_Direction’ section under Register Definitions in
the Hardware manual. 15-0 correspond to the IO bits 47-32.

IOCTL_IP_PARttlPATT_GET_DIR
Function: Read from the direction register.
Input: none
Output: USHORT
Notes: Definition can be found in the ‘_Direction’ section under Register Definitions in
the Hardware manual.

IOCTL_IP_PARttlPATT_SET_POLARITY
Function: Write data to the Polarity register.
Input: USHORT
Output: none
Notes: Definition can be found in the ‘_Polarity’ section under Register Definitions in the
Hardware manual. 15-0 correspond to the IO bits 47-32.

IOCTL_IP_PARttlPATT_GET_POLARITY
Function: Read data from the Polarity register.
Input: none
Output: USHORT
Notes: Definition can be found in the ‘_Polarity’ section under Register Definitions in the
Hardware manual.

IOCTL_IP_PARttlPATT_SET_EDGE_LEVEL
Function: Write data to the EdgeLevel register.
Input: USHORT
Output: none
Notes: Definition can be found in the ‘_EdgeLevel’ section under Register Definitions in
the Hardware manual. 15-0 correspond to the IO bits 47-32 Select Edge or Level
Processing.

 Embedded Solutions Page 17 of 27

IOCTL_IP_PARttlPATT_GET_EDGE_LEVEL
Function: Read data from the EdgeLevel register.
Input: none
Output: USHORT
Notes: Definition can be found in the ‘_EdgeLevel’ section under Register Definitions in
the Hardware manual.

IOCTL_IP_PARttlPATT_SET_INT_EN
Function: Write data to the Interrupt Enable register.
Input: USHORT
Output: none
Notes: Definition can be found in the ‘_IntEn’ section under Register Definitions in the
Hardware manual. 15-0 correspond to the IO bits 47-32. Select Interrupt Enabled for a
particular IO bit.

IOCTL_IP_PARttlPATT_GET_INT_EN
Function: Read data from the Interrupt Enable register.
Input: none
Output: USHORT
Notes: Definition can be found in the ‘_IntEn section under Register Definitions in the
Hardware manual.

IOCTL_IP_PARttlPATT_READ_DIRECT
Function: Read data from the DataIo register.
Input: none
Output: USHORT
Notes: Definition can be found in the ‘_ReadDirect section under Register Definitions in
the Hardware manual. Direct read of IO

IOCTL_IP_PARttlPATT_SET_COS_RISING_STAT
Function: Write data to the COS Rising Status register.
Input: USHORT
Output: none
Notes: Definition can be found in the ‘_CosRisingSt’ section under Register Definitions
in the Hardware manual. 15-0 correspond to the IO bits 47-32. Write to clear bits held
in the read side of the register

 Embedded Solutions Page 18 of 27

IOCTL_IP_PARttlPATT_GET_COS_RISING_STAT
Function: Read data from the COS Rising Status register.
Input: none
Output: USHORT
Notes: Definition can be found in the ‘_CosRisingSt’ section under Register Definitions
in the Hardware manual. Read returns status from Rising COS. See COS Rising
Enable register.

IOCTL_IP_PARttlPATT_SET_COS_FALLING_STAT
Function: Write data to the COS Falling Status register.
Input: USHORT
Output: none
Notes: Definition can be found in the ‘_CosFallingSt’ section under Register Definitions
in the Hardware manual. 15-0 correspond to the IO bits 47-32. Write to clear bits held
in the read side of the register

IOCTL_IP_PARttlPATT_GET_COS_FALLING_STAT
Function: Read data from the COS Falling Status register.
Input: none
Output: USHORT
Notes: Definition can be found in the ‘_CosFallingSt’ section under Register Definitions
in the Hardware manual. Read returns status from Rising COS. See COS Falling
Enable register.

IOCTL_IP_PARttlPATT_SET_COS_RISING_EN
Function: Write data to the COS Rising Enable register.
Input: USHORT
Output: none
Notes: Definition can be found in the ‘_CosRisingEn’ section under Register Definitions
in the Hardware manual. 15-0 correspond to the IO bits 47-32. Write to enable capture
of Rising transitions of IO lines. See CosRisingSt and HalfDiv.

IOCTL_IP_PARttlPATT_GET_COS_RISING_EN
Function: Read data from the COS Rising Enable register.
Input: none
Output: USHORT
Notes: Definition can be found in the ‘_CosRisingEn’ section under Register Definitions
in the Hardware manual. Read returns register value from Rising COS Enable.

 Embedded Solutions Page 19 of 27

IOCTL_IP_PARttlPATT_SET_COS_FALLING_EN
Function: Write data to the COS Falling Enable register.
Input: USHORT
Output: none
Notes: Definition can be found in the ‘_CosFallingEn’ section under Register Definitions
in the Hardware manual. 15-0 correspond to the IO bits 47-32. Write to enable capture
of Falling transitions of IO lines. See CosFallingSt and HalfDiv.

IOCTL_IP_PARttlPATT_GET_COS_FALLING_EN
Function: Read data from the COS Falling Enable register.
Input: none
Output: USHORT
Notes: Definition can be found in the ‘_CosFallingEn’ section under Register Definitions
in the Hardware manual. Read returns register value from Falling COS Enable.

IOCTL_IP_PARttlPATT_READ_FILTERED
Function: Read data from the Filtered Data register.
Input: none
Output: USHORT
Notes: Definition can be found in the ‘_ReadFiltered section under Register Definitions
in the Hardware manual. Read of IO data after EdgeLevel and Polarity settings applied.
i.e. if set to Edge that bit is masked out of this register. If Polarity is set the bit is
inverted compared to the IO bit.

IOCTL_IP_PARttlPATT_SET_COSHALFDIV
Function: Write a value to the HalfDiv register.
Input: USHORT
Output: none
Notes: Definition can be found in the ‘_HalfDiv’ section under Register Definitions in the
Hardware manual. Used to select the clock rate for the COS. 100 MHz reference is
divided based on this register x2.

IOCTL_IP_PARttlPATT_GET_COSHALFDIV
Function: Reads from the HalfDiv register.
Input: none
Output: USHORT
Notes: Definition can be found in the ‘_HalfDiv’ section under Register Definitions in the
Hardware manual.

 Embedded Solutions Page 20 of 27

IOCTL_IP_PARttlPATT_SET_COMMAND
Function: Write a value to the Pattern interface control register.
Input: IP_PARTTLPATT_COMMAND
Output: none
Notes: Set the Mode of operation plus some operational parameters. Driver parses
and applies to the control register. See HW manual for details.

IOCTL_IP_PARttlPATT_GET_COMMAND
Function: Reads from the Command Registers.
Input: none
Output: IP_PARTTLPATT_COMMAND
Notes:

typedef struct _IP_PARttlPATT_COMMAND
{
 BOOLEAN ClockOut; // Set to enable Clock onto GPIO 15
 BOOLEAN ClockInv; // Set to invert Clock [Falling edge valid] if
enabled
 TRIG_SEL Trig; // Select Rising, Falling, Both, No external
trigger Uses bit GPIO bit 14
 BOOLEAN AutoClr; // Set to enable clearing start bit at end of
programmed sequence
 BOOLEAN Enable; // Set to enable operation with the mode selected
and options set
 TYPE_SEL Type; // Select Pattern Type
} IP_PARttlPATT_COMMAND, * PIP_PARttlPATT_COMMAND;

typedef enum _TYPE_SEL {
 UserPattern,
 RisingRamp,
 FallingRamp,
 Pyramid,
 InvertPyramid,
 SquareWave,
 Trapezoidal,
 ShiftUp,
 InValid // do not select, if set on read invalid type read from HW
} TYPE_SEL, * PTYPE_SEL;

typedef enum _TRIG_SEL {
 None,
 Rising,
 Falling,
 Both
} TRIG_SEL, * PTRIG_SEL;

 Embedded Solutions Page 21 of 27

IOCTL_IP_PARttlPATT_GET_DATA_CNT
Function: Reads the current count for the Pattern Data FIFO
Input: none
Output: USHORT
Notes: The Pattern Data FIFO is 4095 x 32. The count represents the number of data
stored for User Mode transmission or loop-back testing.

IOCTL_IP_PARttlPATT_TEST_SET_0
Function: Write a value to the Test 0 register.
Input: USHORT
Output: none
Notes: The contents of this register are sent to the IO if the TestIoEn is set in the base
control register. If enabled the “Get” command should return the same value as written
here. Use without loop-back.

IOCTL_IP_PARttlPATT_TEST_GET_0
Function: Reads from the IO segment 15-0
Input: none
Output: USHORT
Notes: Can read at any time. If used in conjunction with the SET command – loop-back
testing can be performed. If used without the TestIoEn set the current bus status is
returned.

IOCTL_IP_PARttlPATT_TEST_SET_1
Function: Write a value to the Test 1 register.
Input: USHORT
Output: none
Notes: The contents of this register are sent to the IO if the TestIoEn is set in the base
control register. If enabled the “Get” command should return the same value as written
here. Use without loop-back.

IOCTL_IP_PARttlPATT_TEST_GET_1
Function: Reads from the IO segment 31-16
Input: none
Output: USHORT
Notes: Can read at any time. If used in conjunction with the SET command – loop-back
testing can be performed. If used without the TestIoEn set the current bus status is
returned.

 Embedded Solutions Page 22 of 27

IOCTL_IP_PARttlPATT_LOAD_PATTERN
Function: Write a value to the Pattern FIFO
Input: ULONG
Output: none
Notes: The contents of this register are written to the Pattern Storage FIFO to support
User Patterns.

IOCTL_IP_PARttlPATT_READ_PATTERN
Function: Reads from the load registers – not from the FIFO
Input: none
Output: ULONG
Notes: Can read at any time. Can be used for Self-Test. Not normally used in
operation.

IOCTL_IP_PARttlPATT_SET_PATTHALFDIV
Function: Write a value to the Pattern Clock Divider
Input: UHORT
Output: none
Notes: The contents of this register are used to control the frequency of operation for
Pattern Generation. 100 MHz divided by N+1 and then divided by 2 or 4 depending on
Type selected. See HW manual for more information

IOCTL_IP_PARttlPATT_GET_PATTHALFDIV
Function: Reads from the Pattern Clock Divider register
Input: none
Output: USHORT
Notes:

IOCTL_IP_PARttlPATT_WRITEFILE_STD
Function: Move an Array to the Pattern FIFO
Input: TRANS_MULT_PCI
Output: none
Notes: Driver converts Array and Count into multiple writes to HW. 256 max count
typedef struct _TRANS_MULT_PCI
{
 USHORT Count; // number of locations within array to use
 ULONG Data[TransMultDataSizePci]; // array to use
} TRANS_MULT_PCI, * PTRANS_MULT_PCI;

 Embedded Solutions Page 23 of 27

IOCTL_IP_PARttlPATT_READFILE_STD
Function: Driver Fills array with Count reading from Input FIFO
Input: TRANS_MULT_PCI
Output: TRANS_MULT_PCI
Notes: can be used with FIFO loop-back for self-test or external input.

IOCTL_IP_PARttlPATT_WRITEFILE_ENH
Function: Move an Array to the Pattern FIFO
Input: TRANS_MULT_PCIe
Output: none
Notes: Driver converts Array and Count into multiple writes to HW. 512 max count
typedef struct _TRANS_MULT_PCIe
{
 USHORT Count; // number of locations within array to use
 ULONG Data[TransMultDataSizePcie]; // array to use
} TRANS_MULT_PCIe, * PTRANS_MULT_PCIe;

IOCTL_IP_PARttlPATT_READFILE_ENH
Function: Driver Fills array with Count reading from Input FIFO
Input: TRANS_MULT_PCIe
Output: TRANS_MULT_PCIe
Notes: can be used with FIFO loop-back for self-test or external input.

IOCTL_IP_PARttlPATT_LOAD_START
Function: Write a value to the Pattern Start Register
Input: ULONG
Output: none
Notes: Sets the initial pattern for Pattern Generation Modes other than User.

IOCTL_IP_PARttlPATT_READ_START
Function: Reads from the Start registers
Input: none
Output: ULONG
Notes:

 Embedded Solutions Page 24 of 27

IOCTL_IP_PARttlPATT_LOAD_STOP
Function: Write a value to the Pattern Stop Register
Input: ULONG
Output: none
Notes: Sets the Terminal pattern for Pattern Generation Modes other than User.

IOCTL_IP_PARttlPATT_READ_STOP
Function: Reads from the Stop registers
Input: none
Output: ULONG
Notes:

IOCTL_IP_PARttlPATT_LOAD_COUNT
Function: Write a value to the Pattern Count Register
Input: ULONG
Output: none
Notes: Sets the number of cycles to execute before stopping. “0” means infinite.

IOCTL_IP_PARttlPATT_READ_COUNT
Function: Reads from the Count registers
Input: none
Output: ULONG
Notes:

IOCTL_IP_PARttlPATT_READ_RxFIFO
Function: Reads from the Data Storage FIFO
Input: none
Output: ULONG
Notes: Returns next value from Rx FIFO. Will return with previous value if FIFO is
empty when read.

IOCTL_IP_PARttlPATT_READ_RxFIFOCnt
Function: Reads the current count for the Rx FIFO
Input: none
Output: USHORT
Notes: The Command FIFO is 4095x32. Read to determine how many to read with
READFILE command. Alternatively, Status can be polled to determine if data is
present.

 Embedded Solutions Page 25 of 27

IOCTL_IP_PARttlPATT_LOAD_SLOPE
Function: Write a value to the Pattern Slope Register
Input: USHORT
Output: none
Notes: Sets the point-to-point adjustment value. Used with Ramp and related types.

IOCTL_IP_PARttlPATT_READ_SLOPE
Function: Reads from the Slope register
Input: none
Output: USHORT
Notes:

IOCTL_IP_PARttlPATT_LOAD_HCOUNT
Function: Write a value to the Pattern Horizontal Count Register
Input: USHORT
Output: none
Notes: Sets the number of Horizontal points to use in waveforms with this component.
Trapezoidal for example.

IOCTL_IP_PARttlPATT_READ_HCOUNT
Function: Reads from the Horizontal Count register
Input: none
Output: USHORT
Notes:

IOCTL_IP_PARttlPATT_LOAD_RXFIFOAFL
Function: Write a value to the RX FIFO Almost Full Register
Input: USHORT
Output: none
Notes: When the number of data in the Rx FIFO is Greater Than the value in the
register the Rx FIFO AFL bit is set. Cleared otherwise. If the interrupt is enabled can
provide automatic request to perform READFILE with known amount in FIFO based on
programmed value. Depending on the Rx Clock rate allocate the level to provide
enough “time” to read the data before overflowing and enough data to allow efficient
transfer.

 Embedded Solutions Page 26 of 27

IOCTL_IP_PARttlPATT_READ_RXFIFOAFL
Function: Reads from the RX FIFO Almost Full Register
Input: none
Output: USHORT
Notes:

 Embedded Solutions Page 27 of 27

Warranty and Repair
Please refer to the warranty page on our website for the current warranty offered and
options.
https://www.dyneng.com/warranty.html

Service Policy
The driver has gone through extensive testing, and while not infallible, problems
experienced will likely be “cockpit error” rather than an error with the driver. We will
work with you to determine the cause of the issue. If the effort is more than a quick
conversation, we will offer a support contract. We can write updates to the driver to
add features, create middleware etc.
Support
The software described in this manual is provided at no cost to clients who have
purchased the corresponding hardware. Minimal support is included along with the
documentation. For help with integration into your project please contact
sales@dyneng.com for a support contract. Several options are available. With a
contract in place Dynamic Engineers can help with system debugging, special software
development, or whatever you need to get going.

For Service Contact:
Customer Service Department
Dynamic Engineering
150 DuBois Street, Suite B/C
Santa Cruz, CA 95060
831-457-8891
support@dyneng.com

All information provided is Copyright Dynamic Engineering

