
DYNAMIC ENGINEERING
150 DuBois, Suite C

Santa Cruz, CA 95060
(831) 457-8891

https://www.dyneng.com
sales@dyneng.com

Est. 1988

PCI3IP, PCI5IP,
PC104pIP, PC104p4IP,
cPCI2IP, cPCI4IP and

PCIeNIP models

IndustryPack Carrier
Device Drivers

Windows 10 WDF Driver Documentation

Developed with Windows Driver Foundation Ver1.19

Corresponding Hardware:
DynEngIpCarrier Driver covers
PCI5IP PCB: 10-2002-0308 Firmware: Revision 08
PCI3IP PCB: 10-1999-0410 Firmware: Revision 12.5
PCIe3IP PCB: 10-2014-0202 Firmware: Revision A.0
PCIe5IP PCB: 10-2015-1601 Firmware: Revision A.0
VPX2IP PCB: 10-2016-1901 Firmware: Revision A.0

Discrete Drivers:
cPCI2IP PCB: 10-2002-0805 Firmware: Revision E
cPCI4IP PCB: 10-2004-0903 Firmware: Revision B
PC104pIP PCB: 10-2005-0401 Firmware: Revision A
PC104p4IP PCB: 10-2003-0503 Firmware: Revision B

 Embedded Solutions Page 2 of 16

WDF Device/Bus Drivers for PCI/PCIe
based IndustryPack Module Carriers
from Dynamic Engineering

Dynamic Engineering
150 DuBois, Suite C
Santa Cruz, CA 95060
831-457-8891

This document contains information of proprietary
interest to Dynamic Engineering. It has been
supplied in confidence and the recipient, by
accepting this material, agrees that the subject
matter will not be copied or reproduced, in whole or
in part, nor its contents revealed in any manner or to
any person except to meet the purpose for which it
was delivered.

Dynamic Engineering has made every effort to
ensure that this manual is accurate and complete.
Still, the company reserves the right to make
improvements or changes in the product described in
this document at any time and without notice.
Furthermore, Dynamic Engineering assumes no
liability arising out of the application or use of the
device described herein.

The electronic equipment described herein
generates, uses, and can radiate radio frequency
energy. Operation of this equipment in a residential
area is likely to cause radio interference, in which
case the user, at his own expense, will be required to
take whatever measures may be required to correct
the interference.

Dynamic Engineering’s products are not authorized
for use as critical components in life support devices
or systems without the express written approval of
the president of Dynamic Engineering.

This product has been designed to operate with IP
Module carriers and compatible user-provided
equipment. Connection of incompatible hardware is
likely to cause serious damage.

©1999-2020 by Dynamic Engineering.
Trademarks and registered trademarks are owned by
their respective manufacturers.
Revised 10/23/20

 Embedded Solutions Page 3 of 16

Introduction 4

Notes 4

Driver Installation 6
Note: 6

Windows 10 Installation 6

Driver Startup 7

IO Controls 8
IOCTL_CARRIERNAME_GET_INFO 9
IOCTL_CARRIERNAME_GET_SW_ID 9
IOCTL_CARRIERNAME_SET_CONFIG 9
IOCTL_CARRIERNAME_GET_CONFIG 11
IOCTL_CARRIERNAME_GET_INT_STATUS 11
IOCTL_CARRIERNAME_REGISTER_EVENT 14
IOCTL_CARRIERNAME_FORCE_INTERRUPT 14
IOCTL_CARRIERNAME_READ_ID_PROM 14
IOCTL_CARRIERNAME_RESET_ALL_IPS 15
IOCTL_CARRIERNAME_IDENTIFY 15
IOCTL_CARRIERNAME_REINIT_IPS 15
IOCTL_CARRIERNAME_GET_ISR_STATUS 15

WARRANTY AND REPAIR 16

Service Policy 16
Support 16

For Service Contact: 16

Table of Contents

 Embedded Solutions Page 4 of 16

Introduction
PCI3IP, PCI5IP, cPCI2IP, cPCI4IP, PC104pIP, PC104p4IP and PCIeNIP are Win10
device drivers for their respective PCI/PCIe based Industry-Pack (IP) module carriers
from Dynamic Engineering. These drivers were developed with the Windows Driver
Foundation version 1.19 (WDF) from Microsoft, specifically the Kernel-Mode Driver
Framework (KMDF).

Each carrier can hold 1-5 IP modules (corresponding to the number preceding the IP
designation). When a carrier board is recognized by the system, it will start the appropriate
carrier driver, which creates an IP bus to communicate with the IP modules. The carrier
driver enumerates the IP bus by reading the ID prom of each installed IP module to
discover the device type. If an IP module is recognized and the driver has been
installed, it will be started and a Device Object will be created for each matching IP. If
an IP module is not recognized, i.e. the contents of the ID prom do not appear on the list
of IP module drivers in the DynEngIpCarrier.inf or .inf currently used, the IpGeneric
driver will be used to communicate with that IP module.

A separate handle to the IP carrier and to each IP module can be obtained using
CreateFile() calls. IO Control calls (IOCTLs) are used to configure the IP carrier and
read the carrier’s status. The IP carrier driver is responsible for reading its user switch
setting, operating the onboard LEDs, and a few other operations, and the IP carrier’s
main function is to act as a PCI/PCIeóIP Bus bridge device providing resources for the
installed IP modules. These modules operate independently through their own file
handles. See the appropriate IP driver documentation for information on the capabilities
of a particular IP module.

Notes
This document will provide information about all calls made to the driver(s), and how the
driver(s) interact with the device(s) for each of these calls. For more detailed
information on the hardware implementation, refer to the user manual for the specific
carrier you are using.

An effort is underway to combine the various drivers and reference SW packages into a
single entity. “DynEngIpCarrier” is the root name for the combined driver package and
“DynEngIpCarrierAp” is the name of the combined reference SW package.

In order to create the combined package the driver needed to be able to read the HW
and know which type it is working and adjust to the different address and bit maps
accordingly. Three registers are being added to the “legacy” models: PCI3IP, PCI5IP,
cPCI2IP, cPCI4IP, PC104pIP, and PC104p4IP. PCI5IP has been updated to a Spartan
6 based design and had the design enhancements. PCI3IP has been updated retaining
the Spartan II FPGA. A Spartan 6 version is in the works. For PCI3IP users with you
may be able to update the FLASH to operate with the Win10 driver [tested on rev 10],

 Embedded Solutions Page 5 of 16

The other models will be updated. This manual will be updated as new models are
added to the combined driver.

The following terms will be used throughout this document as placeholders for a specific
IP carrier driver name.
CARRIERNAME: PC104PIP, cPCI2IP, cPCI4IP, PCI3IP, PC104p4IP, or PCI5IP or
PCIECAR.
CarrierName: PC104pIP cPCI2IP,cPCI4IP, PC104p4IP, or DynEngIpCarrier

The DynEngIpCarrier driver controls multiple PCI and PCIe based IP carriers. Currently
included are PCI5IP, PCI3IP, PCIe3IP, PCIe5IP and VPX2IP.

 Embedded Solutions Page 6 of 16

Driver Installation
There are several files provided in the driver package. These files include
[CarrierName].sys, [CarrierName].cat, [CarrierName].inf, and [CarrierName]Public.h.
The [CarrierName]Public.h files are ‘C’ header files that define the Application Program
Interfaces (API) to the drivers. These files are required at compile time by any
application that wishes to interface with the drivers, but are not needed for driver
installation.
Note:
Dynamic Engineering Win10 drivers are “Attested” and can be loaded and run on
machines in secure boot mode if desired.

Windows 10 Installation
Copy [CarrierName].sys, [CarrierName].cat, and [CarrierName].inf driver files (*.sys) to
a removable memory device, or other accessible location as preferred.

With one or more of the supported IP carriers installed, power-on the host computer.
• Open the Device Manager from the control panel.
• Under Other devices there should be a PCI Bridge Other or PCI to NUBUS Bridge

device*.
• Right-click on the PCI Bridge Other or PCI to NUBUS Bridge device and select

Update Driver Software.
• Insert the removable memory device prepared above if necessary.
• Select Browse my computer for driver software.
• Select Browse and navigate to the location where the appropriate files are stored.
• Select Next. The CarrierName device driver should now be installed.
• Select Close to close the update window.

The Device Manager should now display the carrier slots that contain valid IP
modules.

• Right-click on each IP slot icon, select Update Driver Software and proceed as
above for each IP module as necessary.

* If neither of these devices is displayed, click on the Scan for hardware changes icon

on the tool-bar or select it in the Action menu.

 Embedded Solutions Page 7 of 16

Driver Startup
Once the driver has been installed it will start automatically when the system recognizes
the hardware.

A handle can be opened to a specific board by using the CreateFile() function call and
passing in the device name obtained from the system.

The interface to the device is identified using a globally unique identifier (GUID), which
is defined in CarrierNamePublic.h.

The main.c file provided with the user test software is designed to work with our test
menu and includes user interaction steps to allow the user to select which board is
being tested in a multiple board environment. The integrator can hardcode for single
board systems or use an automatic loop to operate in multiple board systems without
requiring user interaction. For multiple user systems it is suggested that the board
number is associated with the user switch setting so the calls can be associated with a
specific physical device.

In addition the system can number the slots in an arbitrary manner. Toward the end of
the reference “main” software [DynEngIpCarrier] is an example of rearranging the
handles so they are aligned with the board.

 Embedded Solutions Page 8 of 16

IO Controls
The drivers use IO Control calls (IOCTLs) to configure their devices. IOCTLs refer to a
single Device Object, which controls a single module. IOCTLs are called using the
Win32 function DeviceIoControl() (see below), and passing in the handle to the device
opened with CreateFile() (see above). IOCTLs generally have input parameters, output
parameters, or both. Often a custom structure is used.

The reference software has two files IOCTL.c and IOCTL.h that convert the somewhat
clumsy IOCTL calls into a more readable shorter command. This is possible as some of
the parameters are repeated etc.

The updated combined driver started with the PCIeNIP driver and has added features to
accommodate the legacy cards as they are added. The IOCTL calls remain the same
as they were in the PCIeNIP SW package to minimize any updating required. The
reference SW uses the name hDynEngIpCarrier for the handle to the carrier
independent of the type in use.

BOOL DeviceIoControl(
 HANDLE hDevice, // Handle opened with CreateFile()
 DWORD dwIoControlCode, // Control code defined in API header file
 LPVOID lpInBuffer, // Pointer to input parameter
 DWORD nInBufferSize, // Size of input parameter
 LPVOID lpOutBuffer, // Pointer to output parameter
 DWORD nOutBufferSize, // Size of output parameter
 LPDWORD lpBytesReturned, // Pointer to return length parameter
 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped structure
); // used for asynchronous I/O

 Embedded Solutions Page 9 of 16

The IOCTLs defined in the IP carrier drivers are described below:
IOCTL_CARRIERNAME_GET_INFO
Function: Returns the Driver and Firmware revisions, Switch value, Instance number, Carrier
type number, and number of IP slots supported.
Input: None
Output: DRIVER_CARRIER_DEVICE_INFO structure
Notes: Switch value is the configuration of the onboard dipswitch that has been
selected by the user (see the board silk screen for bit position and polarity). The CPLD
fields are currently only valid for the PCIeNIP types. The Carrier Type is only valid for
DynEngIpCarrier covered models. See the definition of
DRIVER_CARRIER_DEVICE_INFO below. Part of IpPublic.h included with drivers.

 // Driver revision and instance/slot information
typedef struct _DRIVER_CARRIER_DEVICE_INFO {
 USHORT DriverRev;
 UCHAR FirmwareRev;
 UCHAR FirmwareRevMin;
 UCHAR CPLDRev;
 UCHAR CPLDRevMin;
 USHORT InstanceNum;
 UCHAR CarrierType;
 UCHAR SwitchValue;
 UCHAR NumIpSlots;
} DRIVER_CARRIER_DEVICE_INFO, *PDRIVER_CARRIER_DEVICE_INFO;

See Printinfo.c for an example of using this structure and call.

IOCTL_CARRIERNAME_GET_SW_ID
Function: Returns the user switch value.
Input: None
Output: Eight-bit switch value (unsigned character)
Notes: The value returned is the user-selected configuration of the 8-bit onboard
dipswitch. See the board silk screen for bit position and polarity.

See switch_in.c for an example.

IOCTL_CARRIERNAME_SET_CONFIG
Function: Specifies various control parameters for the IP carrier.
Input: CARRIERNAME_CONFIG structure
Output: None
Notes: Specifies the LED configuration and other controls. The configuration
parameters for the PCIeNIP devices are different than the other IP carrier devices and
include interrupt aggregation and de-assert characteristics, LED source and user. See
the definition of LED_MUX, PCIECAR_CONFIG and CARRIERNAME_CONFIG below.

 Embedded Solutions Page 10 of 16

With the DynEngIpCarrier driver a call has been added to support the non PCIeNIP
model designs. “IOCTL_PCICAR_SET_CONFIG” & “IOCTL_PCICAR_GET_CONFIG”.
PCICAR_CONFIG is the structure to use with these types. By reading the Carrier Type
IP module SW can determine which control to use.

See DynEngIpCarrierPublic.h

 // LED source selector
typedef enum _LED_MUX {
 BD_STAT = 0x0,
 USR_LED = 0x1,
 USR_SW = 0x2,
 FLSH_SW = 0x3,
 IP0_STAT = 0x4,
 IP1_STAT = 0x5,
 IP2_STAT = 0x6,
 RESERVED = 0x7,
 PST_HD_CRDT = 0x8,
 NPST_HD_CRDT = 0x9,
 CPLT_HD_CRDT = 0xA,
 PST_DT_CRDT = 0xB,
 NPST_DT_CRDT = 0xC,
 CPLT_DT_CRDT = 0xD,
 SCRATCH_0 = 0xE,
 SCRATCH_1 = 0xF
} LED_MUX, *PLED_MUX;

 // PcieCar Carrier Configuration
typedef struct _PCIECAR_CONFIG {
 UCHAR UserLed;
 LED_MUX LedSrc;
 BOOLEAN IntAgEn; // Interrupt aggregation timer enable
 UCHAR AgTimer; // Interrupt aggregation timer
 UCHAR IntDasTme; // Interrupt de-assert time
} PCIECAR_CONFIG, *PPCIECAR_CONFIG;

 // CARRIERNAME Configuration
typedef struct _CARRIERNAME_CONFIG {
 UCHAR UserLed; // Configuration of the eight user LEDs
 BOOLEAN BusErrIntEn; // Enable the bus error timeout interrupt
 BOOLEAN BusErrStatClr; // Write clears the interrupt latch/status
} CARRIERNAME_CONFIG, *PCARRIERNAME_CONFIG;

	

 Embedded Solutions Page 11 of 16

IOCTL_CARRIERNAME_GET_CONFIG
Function: Returns the fields set in the previous call.
Input: None
Output: CARRIERNAME_CONFIG structure
Notes: See the definitions of LED_MUX, PCIECAR_CONFIG and
CARRIERNAME_CONFIG above.
IOCTL_CARRIERNAME_GET_INT_STATUS
Function: Returns the IP interrupt status register value and clears the bits that were read.
Input: None
Output: Value of the IP module interrupt status register (unsigned long integer)
Notes: PCIeNIP types: See the status bit definitions below. A bit will be cleared by this
call only if it was set when the register was read. This prevents the possibility of
missing an interrupt condition that occurs after the register has been read but before the
latched bits are cleared.

// PcieCar IP interrupt status defines
#define INTERRUPT_IP0_IREQ0 0x00000001 // Interrupt 0 from IP 0
#define INTERRUPT_IP0_IREQ1 0x00000002 // Interrupt 1 from IP 0
#define INTERRUPT_IP0_BUSERR 0x00000004 // Bus error interrupt from IP 0
#define INTERRUPT_IP0_FORCE 0x00000008 // Force interrupt from IP 0
#define INTERRUPT_IP1_IREQ0 0x00000010 // Interrupt 0 from IP 1
#define INTERRUPT_IP1_IREQ1 0x00000020 // Interrupt 1 from IP 1
#define INTERRUPT_IP1_BUSERR 0x00000040 // Bus error interrupt from IP 1
#define INTERRUPT_IP1_FORCE 0x00000080 // Force interrupt from IP 1
#define INTERRUPT_IP2_IREQ0 0x00000100 // Interrupt 0 from IP 2
#define INTERRUPT_IP2_IREQ1 0x00000200 // Interrupt 1 from IP 2
#define INTERRUPT_IP2_BUSERR 0x00000400 // Bus error interrupt from IP 2
#define INTERRUPT_IP2_FORCE 0x00000800 // Force interrupt from IP 2
#define INTERRUPT_IP3_IREQ0 0x00001000 // Interrupt 0 from IP 3
#define INTERRUPT_IP3_IREQ1 0x00002000 // Interrupt 1 from IP 3
#define INTERRUPT_IP3_BUSERR 0x00004000 // Bus error interrupt from IP 3
#define INTERRUPT_IP3_FORCE 0x00008000 // Force interrupt from IP 3
#define INTERRUPT_IP4_IREQ0 0x00010000 // Interrupt 0 from IP 4
#define INTERRUPT_IP4_IREQ1 0x00020000 // Interrupt 1 from IP 4
#define INTERRUPT_IP4_BUSERR 0x00040000 // Bus error interrupt from IP 4
#define INTERRUPT_IP4_FORCE 0x00080000 // Force interrupt from IP 4
#define INTERRUPT_IP5_IREQ0 0x00100000 // Interrupt 0 from IP 5
#define INTERRUPT_IP5_IREQ1 0x00200000 // Interrupt 1 from IP 5
#define INTERRUPT_IP5_BUSERR 0x00400000 // Bus error interrupt from IP 5
#define INTERRUPT_IP5_FORCE 0x00800000 // Force interrupt from IP 5
#define INTERRUPT_IP6_IREQ0 0x01000000 // Interrupt 0 from IP 6
#define INTERRUPT_IP6_IREQ1 0x02000000 // Interrupt 1 from IP 6
#define INTERRUPT_IP6_BUSERR 0x04000000 // Bus error interrupt from IP 6
#define INTERRUPT_IP6_FORCE 0x08000000 // Force interrupt from IP 6
#define INTERRUPT_IP7_IREQ0 0x10000000 // Interrupt 0 from IP 7
#define INTERRUPT_IP7_IREQ1 0x20000000 // Interrupt 1 from IP 7
#define INTERRUPT_IP7_BUSERR 0x40000000 // Bus error interrupt from IP 7
#define INTERRUPT_IP7_FORCE 0x80000000 // Force interrupt from IP 7

 Embedded Solutions Page 12 of 16

CarrierName: The status bits of the other carriers are not latched. The status bits of the
following carriers are all subsets of the status bits of the PCI5IP shown below. The bit
masks for each of carriers show the valid bits for each carrier.

 // Pci5Ip, Pc104p4Ip, cPci4Ip, cPci2Ip, Pc104pIp IP interrupt status defines
#define INTERRUPT_MASKED_A0 0x00000001 // Masked interrupt 0 from IP A
#define INTERRUPT_MASKED_A1 0x00000002 // Masked interrupt 1 from IP A
#define INTERRUPT_MASKED_B0 0x00000004 // Masked interrupt 0 from IP B
#define INTERRUPT_MASKED_B1 0x00000008 // Masked interrupt 1 from IP B
#define INTERRUPT_MASKED_C0 0x00000010 // Masked interrupt 0 from IP C
#define INTERRUPT_MASKED_C1 0x00000020 // Masked interrupt 1 from IP C
#define INTERRUPT_MASKED_D0 0x00000040 // Masked interrupt 0 from IP D
#define INTERRUPT_MASKED_D1 0x00000080 // Masked interrupt 1 from IP D
#define INTERRUPT_MASKED_E0 0x00000100 // Masked interrupt 0 from IP E
#define INTERRUPT_MASKED_E1 0x00000200 // Masked interrupt 1 from IP E
#define INTERRUPT_N 0x00000400 // from any IP, bus error, or
force
#define INTERRUPT_UNMASKED_A0 0x00001000 // Unmasked interrupt 0 from IP A
#define INTERRUPT_UNMASKED_A1 0x00002000 // Unmasked interrupt 1 from IP A
#define INTERRUPT_UNMASKED_B0 0x00004000 // Unmasked interrupt 0 from IP B
#define INTERRUPT_UNMASKED_B1 0x00008000 // Unmasked interrupt 1 from IP B
#define INTERRUPT_UNMASKED_C0 0x00010000 // Unmasked interrupt 0 from IP C
#define INTERRUPT_UNMASKED_C1 0x00020000 // Unmasked interrupt 1 from IP C
#define INTERRUPT_UNMASKED_D0 0x00040000 // Unmasked interrupt 0 from IP D
#define INTERRUPT_UNMASKED_D1 0x00080000 // Unmasked interrupt 1 from IP D
#define INTERRUPT_UNMASKED_E0 0x00100000 // Unmasked interrupt 0 from IP E
#define INTERRUPT_UNMASKED_E1 0x00200000 // Unmasked interrupt 1 from IP E
#define INTERRUPT_BUS_ERROR 0x00400000 // Bus error 1=occurred, 0=none
#define INTERRUPT_BUS_ERROR_A 0x01000000 //
#define INTERRUPT_BUS_ERROR_B 0x02000000 //
#define INTERRUPT_BUS_ERROR_C 0x04000000 //
#define INTERRUPT_BUS_ERROR_D 0x08000000 //
#define INTERRUPT_BUS_ERROR_E 0x10000000 //
#define INTERRUPT_BUS_ERROR_BC 0x20000000 //
#define INTERRUPT_BUS_ERROR_DE 0x40000000 //

#define INTERRUPT_STATUS_MASK 0x7FFFF7FF // Pci5Ip valid interrupt bits
#define INTERRUPT_STATUS_MASK 0x7E7FC7FC // Pc104p4Ip valid interrupt bits
#define INTERRUPT_STATUS_MASK 0x2F4FF4FF // cPci4Ip valid interrupt bits
#define INTERRUPT_STATUS_MASK 0x0340F40F // cPci2Ip valid interrupt bits
#define INTERRUPT_STATUS_MASK 0x0240C40C // Pc104pIp valid interrupt bits

 Embedded Solutions Page 13 of 16

The status bits for the PCI3IP are shown below.

// Pci3Ip IP interrupt status defines
#define INTERRUPT_MASKED_A0 0x00000001 // Masked interrupt 0 from IP A
#define INTERRUPT_MASKED_A1 0x00000002 // Masked interrupt 1 from IP A
#define INTERRUPT_MASKED_B0 0x00000004 // Masked interrupt 0 from IP B
#define INTERRUPT_MASKED_B1 0x00000008 // Masked interrupt 1 from IP B
#define INTERRUPT_MASKED_C0 0x00000010 // Masked interrupt 0 from IP C
#define INTERRUPT_MASKED_C1 0x00000020 // Masked interrupt 1 from IP C
#define INTERRUPT_FORCE 0x00000040 // Forced interrupt active
#define INTERRUPT_N 0x00000080 // from any IP, bus error, or force
#define INTERRUPT_UNMASKED_A0 0x00000100 // Unmasked interrupt 0 from IP A
#define INTERRUPT_UNMASKED_A1 0x00000200 // Unmasked interrupt 1 from IP A
#define INTERRUPT_UNMASKED_A 0x00000300 // Unmasked interrupt 0, 1 from IP
A
#define INTERRUPT_UNMASKED_B0 0x00000400 // Unmasked interrupt 0 from IP B
#define INTERRUPT_UNMASKED_B1 0x00000800 // Unmasked interrupt 1 from IP B
#define INTERRUPT_UNMASKED_B 0x00000C00 // Unmasked interrupt 0, 1 from IP
B
#define INTERRUPT_UNMASKED_C0 0x00001000 // Unmasked interrupt 0 from IP C
#define INTERRUPT_UNMASKED_C1 0x00002000 // Unmasked interrupt 1 from IP C
#define INTERRUPT_UNMASKED_C 0x00003000 // Unmasked interrupt 0, 1 from IP
C
#define INTERRUPT_BUS_ERROR 0x00004000 // Bus error 1=occurred, 0=none
#define INTERRUPT_STATUS_MASK 0x00007FFF // Pci3Ip valid interrupt bits

 Embedded Solutions Page 14 of 16

IOCTL_CARRIERNAME_REGISTER_EVENT
Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned
from that call as the input to this IOCTL. The driver then obtains a system pointer to the
event and signals the event when an interrupt is serviced. The user’s interrupt service
routine waits on this event, allowing it to respond to the interrupt.

See interrupt.c for examples.

IOCTL_CARRIERNAME_FORCE_INTERRUPT
Function: Causes a system interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the PCI bus as long as the channel
master interrupt is enabled. This IOCTL is used for development, to test interrupt
processing.

See interrupt.c for examples.

IOCTL_CARRIERNAME_READ_ID_PROM
Function: Returns the contents of the IP ID prom for a particular slot.
Input: IP slot [A - H] (WCHAR)
Output: ID PROM contents for specified slot (ID_DATA structure)
Notes: Returns the contents of the requested IP ID prom. The slot [A – H] is passed
into this call as a Unicode character and the ID_DATA structure is returned. This
structure contains two Boolean fields that indicate if the IP prom is valid (IP signature
detected) and if it is capable of 32 MHz operation. It also contains a 12-element array
of unsigned characters that contains the ID prom contents, provided the prom was
found to be valid. See the definition of ID_DATA below.

#define PROM_SZ 12 // ID Prom Size

 // ID Prom Data
typedef struct _ID_DATA {
 BOOLEAN Valid; // True if IP signature found
 BOOLEAN Clk32; // True if IP is 32 MHz capable
 USHORT Data[PROM_SZ]; // Prom contents
} ID_DATA, *PID_DATA;

 Embedded Solutions Page 15 of 16

IOCTL_CARRIERNAME_RESET_ALL_IPS
Function: Resets all the IP slots.
Input: None
Output: None
Notes: Resets all IP slots by setting and then clearing the reset_ip bit in each slot
control register.

IOCTL_CARRIERNAME_IDENTIFY
Function: Flashes all user LEDs three times.
Input: None
Output: None
Notes: This call can be used when more than one IP carrier is installed in a chassis and
it is desired to identify the physical location of a particular IP carrier.

See test menu to use – an option toward the bottom of the list.

IOCTL_CARRIERNAME_REINIT_IPS
Function: Re-enumerate all the IPs on the carrier.
Input: None
Output: None
Notes: All handles referencing any of the IP modules on the carrier must be closed
before this call is made in order for the child device object to be updated. This call
should be made after the IOCTL_CARRIERNAME_RESET_ALL_IPS call is made in
order to properly initialize the device registers and stored driver values.

IOCTL_CARRIERNAME_GET_ISR_STATUS
Function: Returns the interrupt status that was read in the ISR from the last interrupt.
Input: None
Output: Interrupt status value (unsigned long integer)
Notes: Returns the status that was read in the driver Interrupt Service Routine while
servicing the last interrupt. This call allows the user to see which interrupt conditions
were active when the last interrupt was serviced. See the status bit definitions listed
after the description of the IOCTL_CARRIERNAME_GET_INT_STATUS call.

 Embedded Solutions Page 16 of 16

Warranty and Repair
Please refer to the warranty page on our website for the current warranty offered and
options. http://www.dyneng.com/warranty.html

Service Policy
Before returning a product for repair, verify as well as possible that the driver is at fault.
The driver has gone through extensive testing and in most cases it will be a “cockpit
error” rather than an error with the driver. When you are sure or at least willing to pay to
have someone help then call the Customer Service Department and arrange to speak
with an engineer. We will work with you to determine the cause of the issue. If the
issue is one of a defective driver we will correct the problem and provide an updated
module(s) to you [no cost]. If the issue is of the customer’s making [anything that is not
the driver] the engineering time will be invoiced to the customer. Pre-approval may be
required in some cases depending on the customer’s invoicing policy.
Support
The software described in this manual is provided at no cost to clients who have
purchased the corresponding hardware. Minimal support is included along with the
documentation. For help with integration into your project please contact
sales@dyneng.com for a support contract. Several options are available. With a
contract in place Dynamic Engineers can help with system debugging, special software
development, or whatever you need to get going.

For Service Contact:
Customer Service Department
Dynamic Engineering
150 DuBois, Suite C
Santa Cruz, CA 95060
(831) 457-8891
support@dyneng.com

All information provided is Copyright Dynamic Engineering

