
DYNAMIC ENGINEERING
150 DuBois, Suite C Santa Cruz, CA 95060

(831) 457-8891
 https://www.dyneng.com

sales@dyneng.com
 Est. 1988

PCIeHarpBase &
PCIeHarpChan

Windows 10 WDF Driver Documentation

Developed with Windows Driver Foundation Ver1.9

Manual Revision 1p1
Corresponding Hardware: Revision 01

10-2019-1601
FLASH revision 1p2

 Embedded Solutions Page 2 of 15

WDF Device Drivers for
PCIe-Harpoon 4-Channel Simulator and
Digital Data-Link Serial Interface

Dynamic Engineering
150 DuBois St., Suite C
Santa Cruz, CA 95060
831-457-8891

This document contains information of
proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the
recipient, by accepting this material, agrees that
the subject matter will not be copied or
reproduced, in whole or in part, nor its contents
revealed in any manner or to any person except
to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to
ensure that this manual is accurate and
complete. Still, the company reserves the right to
make improvements or changes in the product
described in this document at any time and
without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of
the application or use of the device described
herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this equipment
in a residential area is likely to cause radio
interference, in which case the user, at his own
expense, will be required to take whatever
measures may be required to correct the
interference.

Dynamic Engineering’s products are not
authorized for use as critical components in life
support devices or systems without the express
written approval of the president of Dynamic
Engineering.

Connection of incompatible hardware is likely to
cause serious damage.

©2020 by Dynamic Engineering.
Trademarks and registered trademarks are owned by their
respective manufactures.

 Embedded Solutions Page 3 of 15

Introduction ... 4
Driver Installation .. 6
Windows 10 Installation .. 6
IO Controls ... 8

IOCTL_PCIeHARP_BASE_GET_INFO .. 8
IOCTL_PCIeHARP_BASE_LOAD_PLL_DATA ... 9
IOCTL_PCIeHARP_BASE_READ_PLL_DATA ... 9
IOCTL_PCIeHARP_BASE_SET_MASTER_INT_CONFIG ... 9
IOCTL_PCIeHARP_BASE_GET_MASTER_INT_CONFIG .. 9
IOCTL_PCIeHARP_BASE_BRIDGE_RECONFIG ... 10
IOCTL_PCIeHARP_BASE_SET_GENERIC ... 10
IOCTL_PCIeHARP_BASE_GET_GENERIC .. 10
IOCTL_PCIeHARP_CHAN_GET_INFO .. 11
IOCTL_PCIeHARP_CHAN_SET_CONFIG .. 11
IOCTL_PCIeHARP_CHAN_GET_CONFIG ... 11
IOCTL_PCIeHARP_CHAN_SET_STATUS ... 11
IOCTL_PCIeHARP_CHAN_GET_STATUS ... 11
IOCTL_PCIeHARP_CHAN_REGISTER_EVENT ... 12
IOCTL_PCIeHARP_CHAN_SET_MASTER_INT_CONFIG ... 12
IOCTL_PCIeHARP_CHAN_GET_MASTER_INT_CONFIG ... 12
IOCTL_PCIeHARP_CHAN_FORCE_INTERRUPT ... 12
IOCTL_PCIeHARP_CHAN_CLR_FORCE_INTERRUPT ... 12
IOCTL_PCIeHARP_CHAN_GET_ISR_STATUS ... 13
IOCTL_PCIeHARP_CHAN_SET_TESTSTART .. 13
IOCTL_PCIeHARP_CHAN_SET_TXAMTCNT .. 13
IOCTL_PCIeHARP_CHAN_GET_TXAMTCNT .. 13
IOCTL_PCIeHARP_CHAN_SET_RXAFLCNT ... 13
IOCTL_PCIeHARP_CHAN_GET_RXAFLCNT .. 13
IOCTL_PCIeHARP_CHAN_SET_TXRXDATA .. 14
IOCTL_PCIeHARP_CHAN_GET_TXRXDATA ... 14
IOCTL_PCIeHARP_CHAN_SET_CHANSWCNTL ... 14
IOCTL_PCIeHARP_CHAN_GET_ CHANSWCNTL ... 14

Warranty and Repair .. 15
Service Policy .. 15
Support ... 15
For Service Contact: .. 15

Table of Contents

 Embedded Solutions Page 4 of 15

Introduction
The PCIeHarpBase and PCIeHarpChan are Windows device drivers to support PCIe-
Harpoon from Dynamic Engineering. This driver was developed with the Windows
Driver Foundation version 1.9 (WDF) from Microsoft, specifically the Kernel-Mode Driver
Framework (KMDF).

The Driver software package has two parts. The drivers for Windows® 10 OS, and the
User Application “UserAp” executable.

The driver is delivered electronically. The files supplied are installed into the client
system to allow access to the hardware. The UserAp code is delivered in source form
[C] and is for the purpose of providing a reference to using the driver.

UserAp is a stand-alone code set with a simple, and powerful menu plus a series of
“tests” that can be run on the installed hardware. Each of the tests execute calls to the
driver, pass parameters and structures, and get results back. With the sequence of
calls demonstrated, the functions of the hardware are utilized for loop-back testing. The
software is used for manufacturing test at Dynamic Engineering.
The test software can be ported to your application to provide a running start. It is
recommended to port the Register tests to your application to get started. The tests are
simple and will quickly demonstrate the end-to-end operation of your application making
calls to the driver and interacting with the hardware.

The menu allows the user to add tests, to run sequences of tests, to run until a failure
occurs and stop or to continue, to program a set number of loops to execute and more.
The user can add tests to the provided test suite to try out application ideas before
committing to your system configuration. In many cases the test configuration will allow
faster debugging in a more controlled environment before integrating with the rest of the
system. The test suite is designed to accommodate up to 5 boards. The number of
boards can be expanded. See Main.c to increase the number of handles.

The reference SW was developed with Visual Studio. The solution can be opened and
used directly if you have this tool. If using another tool the source and include files will
need to be imported into your project.
The hardware manual defines the pinout, the bitmaps and detailed configurations for
each feature of the design. The driver handles all aspects of interacting with the
hardware. For added explanations about what some of the driver functions do, please
refer to the hardware manual.

We strive to make a useable product. If you have suggestions for extended features,
special calls for particular set-ups or whatever please share them with us.

 Embedded Solutions Page 5 of 15

When PCIe-Harpoon is recognized by the system, the base driver will start which will
create a device object for the board. The Base driver will launch 4 copies of the
Channel driver. If more than one board is found additional copies of the driver are
loaded. From within the PCIe-Harpoon driver the user can access the switch and
device number information to determine the specific device being accessed when more
than one is installed.
The reference software application has a loop to check for devices and allows selection
of the device to be used. The message is suppressed when only 1 device is found.

IO Control calls (IOCTLs) are used to configure the board and read status. Read and
Write calls are used to move data in and out of the device.
Note
This documentation will provide information about all calls made to the drivers, and how
the drivers interact with the device for each of these calls. For more detailed
information on the hardware implementation, refer to the PCIe-Harpoon user manual
(also referred to as the hardware manual).

 Embedded Solutions Page 6 of 15

Driver Installation
There are several files provided in each driver package. These files include
PCIeHarpBase.sys, PCIeHarpBase.cat, PCIeHarpBase.inf for the base and
PCIeHarpChan.sys, PCIeHarpChan.cat, PCIeHarpChan.inf for the channels. Copy to a
folder on your target computer or memory device [Flash Drive].

PCIeHarpChanPublic.h and PCIeHarpBasePublic.h are C header files that define the
Application Program Interface (API) to the driver. These files are required at compile
time by any application that wishes to interface with the driver, but are not needed for
driver installation. The header files are supplied with UserAp.

Windows 10 Installation

Copy the supplied system files to a folder of your choice.

With the hardware installed, power-on the host computer.

• Open the Device Manager from the control panel.
• Under Other devices there should be an item for each module installed.
• Right-click on the first device and select Update Driver Software.
• Insert the removable memory device prepared above if necessary.
• Select Browse my computer for driver software.
• Select Browse and navigate to the memory device or other location prepared above.
• Select Next. The PCIeHarpBase device driver should now be installed.
• Select Close to close the update window.
• Right-click on the remaining Channel icons and repeat the above procedure as

necessary.
PCIeHarpChan will be installed for the channels.

* If the devices are not displayed, click on the Scan for hardware changes icon on the
Device Manager tool-bar.

 Embedded Solutions Page 7 of 15

Driver Startup
Once the driver has been installed it will start automatically when the system recognizes
the hardware. Handles can be opened to a specific board by using the CreateFile()
function call and passing in the device name obtained from the system. The interfaces
to the device and I/O channels are identified using globally unique identifiers (GUIDs),
which are defined within the driver files.

See an example of opening handles for device devNum in main.c of the UserAp.

 Embedded Solutions Page 8 of 15

IO Controls
The driver uses IO Control calls (IOCTLs) to configure the device. IOCTLs refer to a
single Device Object, which controls a single board. IOCTLs are called using the
function DeviceIoControl() (see below), and passing in the handle to the device opened
with CreateFile() (see above). IOCTLs generally have input parameters, output
parameters, or both. Often a custom structure is used.

BOOL DeviceIoControl(
 HANDLE hDevice, // Handle opened with CreateFile()
 DWORD dwIoControlCode, // Control code defined in API header file
 LPVOID lpInBuffer, // Pointer to input parameter
 DWORD nInBufferSize, // Size of input parameter
 LPVOID lpOutBuffer, // Pointer to output parameter
 DWORD nOutBufferSize, // Size of output parameter
 LPDWORD lpBytesReturned, // Pointer to return length parameter
 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped structure
); // used for asynchronous I/O

IOCTL_PCIeHARP_BASE_GET_INFO
Function: Returns the Driver version, Xilinx design revision, PLL device ID, User Switch value,
and Instance number.
Input: None
Output: PCIeHARP_BASE_DRIVER_DEVICE_INFO structure
Notes: The PLL device ID is used by the driver to communicate with the onboard PLL
over its I2C serial bus, Switch value is the current setting of the onboard dipswitch that
has been selected by the User (see the board silk screen for bit position and polarity).
Instance number is the zero-based device number. See PCIeHarpBasePublic.h for the
definition of PCIeHARP_BASE_DRIVER_DEVICE_INFO. See PCIeHarpBasePublic.h
for the definition of the structure.

 Embedded Solutions Page 9 of 15

IOCTL_PCIeHARP_BASE_LOAD_PLL_DATA
Function: Loads the internal registers of the PLL.
Input: PCIeHARP_BASE_PLL_DATA structure
Output: None
Notes: The PCIeHARP_BASE_PLL_DATA structure has only one field: Data – an array
of 40 bytes containing the PLL register data to write to the PLL device. During the
driver initialization, the PLL is loaded with default data that sets the 8x clock to 800 kHz
to provide a data-rate of 100 Kbits/second. This call is only needed if some other data-
rate is desired. See PCIeHarpBasePublic.h for the definition of the structure.

IOCTL_PCIeHARP_BASE_READ_PLL_DATA
Function: Returns the contents of the PLL’s internal registers
Input: None
Output: PCIeHARP_BASE_PLL_DATA structure
Notes: The register data is output in the PCIeHARP_BASE_PLL_DATA structure in an
array of 40 bytes. See PCIeHarpBasePublic.h for the definition of the structure.

IOCTL_PCIeHARP_BASE_SET_MASTER_INT_CONFIG
Function: Set or clear the Master Interrupt Enable.
Input: PCIeHARP_BASE_MASTER_INT_CONFIG structure
Output: None
Notes: The PCIeHARP_BASE_MASTER_INT_CONFIG structure has only two fields:
MasterIntEn, and Port Interrupt Status. The Status bits are read only. See
PCIeHarpBasePublic.h for the definition of the structure.

IOCTL_PCIeHARP_BASE_GET_MASTER_INT_CONFIG
Function: Returns the contents of the Master Interrupt Register
Input: None
Output: PCIeHARP_BASE_MASTER_INT_CONFIG structure
Notes: The state of Master Interrupt Enable along with the state of the potential
interrupters is returned. MasterIntEn = TRUE to be able to cause an interrupt to the
system. Port Interrupts are ANDed with MasterIntEn. Port interrupt status can be used
to poll if desired. See PCIeHarpBasePublic.h for the definition of the structure.

 Embedded Solutions Page 10 of 15

IOCTL_PCIeHARP_BASE_BRIDGE_RECONFIG
Function: Reprogram Bridge with enhanced settings for better DMA performance.
Input: None
Output: None
Notes: PCIe-Harpoon does not currently support DMA. This IOCTL is not currently
required for use.

IOCTL_PCIeHARP_BASE_SET_GENERIC
Function: Generic write function, any address any data.
Input: PCIeHARP_BASE_AD structure
Output: None
Notes: The PCIeHARP_BASE_AD structure has fields: Address and Data. Be careful
to stay within the address range of the Harpoon. Normally other IOCTLs are used. If
you prefer a flat design this IOCTL can access all ports as a flat design. See
PCIeHarpBasePublic.h for the definition of the structure.

IOCTL_PCIeHARP_BASE_GET_GENERIC
Function: Generic read function, any address
Input: None
Output: PCIeHARP_BASE_AD structure
Notes: Set the address, returns with the data from that address. Be careful to stay
within the address range of the Harpoon. Normally other IOCTLs are used. If you
prefer a flat design this IOCTL can access all ports as a flat design. See
PCIeHarpBasePublic.h for the definition of the structure.

 Embedded Solutions Page 11 of 15

IOCTL_PCIeHARP_CHAN_GET_INFO
Function: Returns the Driver version and Instance number.
Input: None
Output: PCIeHARP_CHAN_DRIVER_DEVICE_INFO structure
Notes: Instance number is the zero-based device number. See PCIeHarpChanPublic.h
for the definition of the structure.

IOCTL_PCIeHARP_CHAN_SET_CONFIG
Function: Configures the channel control register for an I/O channel on the PCI-Harpoon.
Input: ULONG
Output: None
Notes: Sets the configuration parameters for the channel interface, including state-
machine enables, interrupt mode, termination enables and the receive data invert (used
for testing data loop-back). See the hardware manual for detailed descriptions of the
control parameter functions.

IOCTL_PCIeHARP_CHAN_GET_CONFIG
Function: Returns the configuration of the channel control register.
Input: None
Output: ULONG
Notes: Returns the fields set in the previous call.

IOCTL_PCIeHARP_CHAN_SET_STATUS
Function: Clears the latched status bits.
Input: Value of status bits to clear (ULONG)
Output: None
Notes: The bits in STAT_LATCH_MASK will be cleared if they are set high in the input
field to this call.

IOCTL_PCIeHARP_CHAN_GET_STATUS
Function: Returns the value of the channel status register.
Input: None
Output: ULONG
Notes: The interrupt status bits will be latched even if they are not enabled, but only
the enabled interrupts will cause a system interrupt to occur.

 Embedded Solutions Page 12 of 15

IOCTL_PCIeHARP_CHAN_REGISTER_EVENT
Function: Registers an event to be signaled when a channel interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned
from that call as the input to this IOCTL. The driver then obtains a system pointer to the
event and signals the event when a user interrupt is serviced. The user interrupt
service routine waits on this event, allowing it to respond to the interrupt. See
interrupt.c for an example using the Force Interrupt function.

IOCTL_PCIeHARP_CHAN_SET_MASTER_INT_CONFIG
Function: Set or clear the Master Interrupt Enable.
Input: PCIeHARP_CHAN_MASTER_INT_CONFIG structure
Output: None
Notes: See PCIeHarpChanPublic.h for the definition of the structure.

IOCTL_PCIeHARP_CHAN_GET_MASTER_INT_CONFIG
Function: Returns the contents of the Master Interrupt Register
Input: None
Output: PCIeHARP_CHAN_MASTER_INT_CONFIG structure
Notes: The state of Master Interrupt Enable is returned. MasterInEn is ANDed with the
latched Channel Status to create the Port/Channel level interrupt. See
PCIeHarpChanPublic.h for the definition of the structure.

IOCTL_PCIeHARP_CHAN_FORCE_INTERRUPT
Function: Causes a channel interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted at the port level as long as the master
interrupt (for the port) is enabled. This IOCTL is used for development, to test interrupt
processing. To create an interrupt at the system level MasterInEn in the Base must
also be enabled.

IOCTL_PCIeHARP_CHAN_CLR_FORCE_INTERRUPT
Function: Clears the Force Interrupt bit
Input: None
Output: None
Notes: The ISR will disable via the MasterIntEn leaving the cause of the interrupt alone.
Use this call to clear the Force Interrupt bit.

 Embedded Solutions Page 13 of 15

IOCTL_PCIeHARP_CHAN_GET_ISR_STATUS
Function: Returns the interrupt status that was read in the ISR from the channel’s last
user interrupt.
Input: None
Output: Interrupt status value (unsigned long integer).
Notes: Returns the value of the status register that was read in the interrupt service
routine of the last interrupt serviced. The Interrupt Status is cleared in the ISR after
storing into this field. Reading the standard status register will return the current value
of the status register with the bits cleared unless another interrupt has be requested.

IOCTL_PCIeHARP_CHAN_SET_TESTSTART
Function: Explicitly controls the Test Enable and Test Clock outputs.
Input: ULONG
Output: None
Notes: See PCIeHarpChanPublic.h for the definitions of the bits. Set the Auto Start bit
for a HW controlled transfer. Use the discrete clock and enable for SW controlled
operation. Used when PCIe-Harpoon is acting as a bus master. Not used with an
external master.

IOCTL_PCIeHARP_CHAN_SET_TXAMTCNT

IOCTL_PCIeHARP_CHAN_GET_TXAMTCNT

IOCTL_PCIeHARP_CHAN_SET_RXAFLCNT

IOCTL_PCIeHARP_CHAN_GET_RXAFLCNT
Function: Spare registers for SW test and BIT purposes
Input: ULONG
Output: ULONG
Notes: 16 bit registers on LW boundaries. Set writes, Get reads. See Register.c for
an example.

 Embedded Solutions Page 14 of 15

IOCTL_PCIeHARP_CHAN_SET_TXRXDATA
Function: Writes the 17-bit data-word (16-bit data plus parity) to the shift register.
Input: Transmit data value (unsigned long integer)
Output: None
Notes: State machine detects data written into holding register and moves into the
output SR when Tx is enabled and clock starts. TX interrupt can be used to know when
safe to load next data.

IOCTL_PCIeHARP_CHAN_GET_TXRXDATA
Function: Reads the 17-bit data word from the shift register.
Input: None
Output: Receive data value (unsigned long integer)
Notes: RX Interrupt when set indicates data is ready to read from register.

IOCTL_PCIeHARP_CHAN_SET_CHANSWCNTL
Function: Controls the opto-isolated switches that control the 28-volt outputs and returns.
Input: ULONG
Output: None
Notes: There are seven +28V switches and four ground switches. See
PCIeHarpChanPublic.h for the definitions of the bits. More information in the HW
manual.

IOCTL_PCIeHARP_CHAN_GET_ CHANSWCNTL
Function: Returns the bits set in the previous call.
Input: None
Output: ULONG
Notes:

 Embedded Solutions Page 15 of 15

Warranty and Repair
Please refer to the warranty page on our website for the current warranty offered and
options.
http://www.dyneng.com/warranty.html.

Service Policy
The driver has gone through extensive testing, and while not infallible, problems
experienced will likely be “cockpit error” rather than an error with the driver. We will
work with you to determine the cause of the issue. If the effort is more than a quick
conversation, we will offer a support contract. We can write updates to the driver to
add features, create middleware etc.

Support
The software described in this manual is provided at no cost to clients who have
purchased the corresponding hardware. Minimal support is included along with the
documentation. For help with integration into your project please contact
sales@dyneng.com for a support contract. Several options are available. With a
contract in place Dynamic Engineers can help with system debugging, special software
development, or whatever you need to get going.

For Service Contact:
Customer Service Department
Dynamic Engineering
150 DuBois Street, Suite C
Santa Cruz, CA 95060
831-457-8891
support@dyneng.com

All information provided is Copyright Dynamic Engineering

