
 Embedded Solutions Page 1 of 55

DYNAMIC ENGINEERING
150 DuBois, Suite B/C Santa Cruz, CA 95060

(831) 457-8891
www.dyneng.com

sales@dyneng.com
Est. 1988

User Manual

PCIe-Spartan-VI

Re-configurable Logic
with RS-485/LVDS and TTL IO

PCIeAlteraCyclone IV shown. Similar in appearance to Spartan VI version.

Revision 1p0

Corresponding Hardware:
Fab Number: 10-2023-0701

©2023 by Dynamic Engineering.
Other trademarks and registered trademarks are owned by their respective manufacturers.

 E m b e d d e d S o l u t i o n s P a g e 2 o f 5 5

PCIe-Spartan-VI
Re-configurable Logic

PCIe Module
Dynamic Engineering

150 DuBois St. Suite B/C, Santa Cruz CA 95060
831-457-8891

This document contains information of proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the recipient, by accepting this material, agrees
that the subject matter will not be copied or reproduced, in whole or in part, nor its
contents revealed in any manner or to any person except to meet the purpose for which
it was delivered.

Dynamic Engineering has made every effort to ensure that this manual is accurate and
complete. Still, the company reserves the right to make improvements or changes in the
product described in this document at any time and without notice. Furthermore,
Dynamic Engineering assumes no liability arising out of the application or use of the
device described herein.

The electronic equipment described herein generates, uses, and can radiate radio
frequency energy. Operation of this equipment in a residential area is likely to cause
radio interference, in which case the user, at his own expense, will be required to take
whatever measures may be required to correct the interference.

Dynamic Engineering’s products are not authorized for use as critical components in life
support devices or systems without the express written approval of the president of
Dynamic Engineering.

This product has been designed to operate as a PCIe Module and compatible user-
provided equipment. Connection of incompatible hardware is likely to cause serious
damage.

 Embedded Solutions Page 3 of 55

PRODUCT DESCRIPTION 7

THEORY OF OPERATION 11

Feature List Current 14

PROGRAMMING 15

ADDRESS MAP 16

Controller Base Address Map 16

Controller Port Address Map 16

User Base Address Map 17

User Port Address Map 18

REGISTER DEFINITIONS 19

Bus Controller Base Register Definitions 19
PcieSpartanVI_BASE_BASE 19
PcieSpartanVI_BASE_ID 20
PcieSpartanVI_BASE_STATUS 21
PcieSpartanVI_BASE_USER_FIFO 22
PcieSpartanVI_BASE_USER_FIFO_CNT Error! Bookmark not defined.

Bus Controller Port Register Definitions 23
PcieSpartanVI_CH_CNTRL 23
PcieSpartanVi_CH_STATUS 25
PcieSpartanVi_CH_WR_DMA_PNTR 27
PcieSpartanVI_CH_RD_DMA_PNTR 29
PcieSpartanVI_CH_TX_FIFO_CNT 30
PcieSpartanVI_CH_RX_FIFO_CNT 30
PcieSpartanVI_CH_FIFO 31
PcieSpartanVI_CH_TX_AMT 31
PcieSpartanVI_CH_RX_AFL 32
PcieSpartanVI_CH_TX_AMT_LVL 32
PcieSpartanVI_CH_RX_AFL_LVL 33

Table of Contents

 Embedded Solutions Page 4 of 55

User FPGA Base Address Map 34
PcieSpartanVI_USER_BASE 34
PcieSpartanVI_USER_LED 36
PcieSpartanVI_USER_STATUS 36
PcieSpartanVI_USER_TTL_DAT 38
PcieSpartanVI_USERT_TTL_EN 38

Application Note: Spare IO 39
PcieSpartanVI_USER_CNT 39
PcieSpartanVI_USER_PLL_FIFO 40

User Channel Address Map 41
PcieSpartanVI_USER_CH_BASE 41
PcieSpartanVI_USER_CH_STATUS 43
PcieSpartanVI_USER_CH_SP 44
PcieSpartanVI_USER_BUS_FIFO_CNT 44
PcieSpartanVI_BUS_USER_FIFO_CNT 45
PcieSpartanVI_USER_FIFO_WR 45
PcieSpartanVI_USER_FIFO_RD 46

USER FPGA REFERENCE DESIGN 47

LOOP-BACK 48

D100 STANDARD PIN ASSIGNMENT 49

APPLICATIONS GUIDE 50

Interfacing 50

Construction and Reliability 51

Thermal Considerations 51

WARRANTY AND REPAIR 52

Service Policy 52

Out of Warranty Repairs 52

For Service Contact: 52

SPECIFICATIONS 53

ORDER INFORMATION 54

APPENDIX 55

 Embedded Solutions Page 5 of 55

General Purpose Bus Timing 55

 Embedded Solutions Page 6 of 55

Figure 1 PCIe-Spartan-VI Block diagram 9
Figure 2 PCIe-Spartan-VI Reference design Block diagram 11
Figure 3 PCIe-Spartan-VI Controller Base Address Map 16
Figure 4 PCIe-Spartan-VI Controller Port Address Map 16
Figure 5 PCIe-Spartan-VI User Base Address Map 17
Figure 6 PCIe-Spartan-VI User Port Address Map 18
Figure 7 PCIe-Spartan-VI Xilinx Base Control Register 19
Figure 8 PCIe-Spartan-VI Xilinx ID Register 20
Figure 9 PCIe-Spartan-VI Status Port 21
Figure 10 PCIe-Spartan-VI Programming port 22
Figure 11 PCIe-Spartan-VI Controller Channel Control Register 23
Figure 12 PCIe-Spartan-VI Controller Channel Status Register 25
Figure 13 PCIe-Spartan-VI Controller Channel Write DMA Register 27
Figure 14 PCIe-Spartan-VI Controller Channel Read DMA Register 29
Figure 15 PCIe-Spartan-VI Controller Channel TX FIFO Count 30
Figure 16 PCIe-Spartan-VI Controller Channel RX FIFO Count 30
Figure 17 PCIe-Spartan-VI Controller Channel FIFO Access 31
Figure 18 PCIe-Spartan-VI Controller Channel TX Almost Empty Pulse 31
Figure 19 PCIe-Spartan-VI Controller Channel RX Almost Full Pulse 32
Figure 20 PCIe-Spartan-VI Controller Channel TX Almost Empty Level 32
Figure 21 PCIe-Spartan-VI Controller Channel RX Almost Full Level 33
Figure 22 PCIe-Spartan-VI User Base Control Register 34
Figure 23 PCIe-Spartan-VI User LED Control Register 36
Figure 24 PCIe-Spartan-VI User Status Register 36
Figure 25 PCIe-Spartan-VI TTL Data Register 38
Figure 26 PCIe-Spartan-VI TTL Data Enable Register 38
Figure 27 PCIe-Spartan-VI Counter Results 39
Figure 28 PCIe-Spartan-VI PLL FIFO 40
Figure 29 PCIe-Spartan-VI Channel Base Register 41
Figure 30 PCIe-Spartan-VI Channel Status Register 43
Figure 31 PCIe-Spartan-VI Channel Spare Register 44
Figure 32 PCIe-Spartan-VI Channel UB FIFO Count 44
Figure 33 PCIe-Spartan-VI Channel BU FIFO Count 45
Figure 34 PCIe-Spartan-VI Channel UB FIFO Write 45
Figure 35 PCIe-Spartan-VI Channel BU FIFO Read 46
Figure 36 PCIe-Spartan-VI D100 Pinout 49

List of Figures

 Embedded Solutions Page 7 of 55

Product Description
PCIe-Spartan-VI is part of the PCIe Compatible family of modular I/O components.
PCIe-Spartan-VI provides a user configurable Spartan VI FPGA [XC6SLX100-
3FGG676I], along with 40 RS-485 or 40 LVDS transceivers, 12 TTL IO, 24 PLL based
clock references and FIFO support, full DMA capabilities in a half-length single slot
design.

The RS-485 and LVDS parts can be mixed. The standard RS-485 devices are rated for
50 MHz. The standard LVDS parts are rated for 200 MHz.

The PCIe bus implementation is 4 lanes using a [Pericom] PI7C9X130DNDE bridge.
The bridge is connected through a Xilinx Bus Controller FPGA to the User Spartan VI
FPGA. The Bus Controller provides a GPB [General Purpose Bus] which operates as
a 32 bit, 50 MHz connection for programming registers and other set-up / status
operation. In addition, there are 16 unidirectional data lanes arranged as 8 bidirectional
pairs to support transmit and receive operations between the User and Controller
FPGAs.

The Bus Controller supports multiple channels of data-flow to the User FPGA with
FIFOs. There are 8 transmit and 8 receive FIFO paths. The “transmit” path is loaded
using DMA transfers to read data from the host into the Bus Controller memory. Local
transfer engines move the data to the User FPGA side using FIFO status to control the
transfer. With 8 DMA controllers each data path is separate and can operate in
parallel. The “receive” path works in reverse with transfer engines in the User FPGA
moving data into the Bus Controller using the FIFO status to control the transfer. Data
is DMA transferred from the local FIFO within the Bus Controller to host memory. 8
DMA engines are available to manage the receive direction allowing for 8 ports of full
duplex operation. Within the Bus Controller is a local arbitrator to control access to the
intermediate bus. The controller is automatic – no software required.

The data is moved between the two FPGAs with a “push”, the target side provides a
FULL and Almost Full status to the data mover. The data transfer engine pushes data
from the local FIFO to the target FIFO. When both the local and target FIFOs are not
almost empty and not almost full respectively; the data is moved in a burst. 1 byte per
clock. Due to pipelining, there are delays from write to current status being available to
the control engine. When Master and or Target is “almost” (Full or Empty) the data
transfer engine slows down to get exact status.

PCIe-Spartan-VI has drivers for Windows, and Linux. Both provide an automatic facility
to reprogram the bridge for improved performance. Both come with a sample user
application to demonstrate the use of the various HW capabilities. The VHDL for the
User FPGA reference design is also available. The reference design can be modified
to perform your unique function. The reference design has 8 ports plus a base function.

 Embedded Solutions Page 8 of 55

Built in support for internal and external loop-back of the data lanes is provided. The
external loop-back [RS485 or LVDS] is in the form of a nibble wide data port with
direction control[internal] and strobe. Your state machine can be substituted for the IO
controller in the reference design.

There are 8 channels in the reference design. If you need more IO per channel and
fewer channels or some other mix the VHDL can be modified. The GPB is supported
with IOCTL style support in the driver allowing for user redefinition of the memory map
within the User FPGA.

The reference software demonstrates DMA operation through the external IO and
internal BIT tests. In addition, non-DMA versions are provided.

The base reference design has a controller for programming the PLLs. The reference
software shows how to program the interface. Automatic software for taking the
Cypress .JED file, parsing and loading the PLL.

The base reference design also has a simple register based, interface for the TTL IO.

An 8-bit "dip switch" is provided on the PCIe-Spartan-VI-485/LVDS. The switch
configuration is readable via a register. The switch is for user-defined purposes. We
envision the switch being used for software configuration control, PCIe board
identification or test purposes.

LEDs are provided on board for user-defined purposes. The User FPGA has 4 LEDs,
which can be used for whatever purpose the user desires. We have used the LEDs for
test / debugging purposes – handy indications of what the hardware state is or what the
current software process is. The LEDs in our reference design default to a non zero
pattern to show the FLASH file has loaded properly. The register controlling the LEDs
can overwrite the default.

In addition LEDs are provided to indicate that the regulators are operating properly

The UserAp reference software can load a User FPGA design file into the User FPGA
at any time. UserAp also contains a function to reload from FLASH to allow the user to
toggle back and forth between design versions rapidly. User Designs can also be
programmed into FLASH with the programming tool [Impact in this case].

The User FPGA will be loaded on power transitions automatically from FLASH.
Software can overwrite.

 Embedded Solutions Page 9 of 55

Figure 1 PCIe-Spartan-VI Block diagram

PCIe-Spartan-VI-485/LVDS has both RS-485/LVDS and TTL IO supported by a D100
connector. There are 40 un-committed RS-485 or LVDS IO. The standard RS-485
device supports 50 MHz operation. The LVDS parts have much larger bandwidth, 200
MHz receive and 400+ MHz transmit. The transceivers are designed for multi-drop

 Embedded Solutions Page 10 of 55

LVDS operation. The SN65MLVD201D is the part in the current design.

The 485/LVDS lines are routed as differential pairs with matched lengths and
impedance control. The lengths are matched from the connector edge to the ball on the
User FPGA. The right-angle connector is used for the matched length calculations.
With the vertical connector option, the lengths will be slightly off. The differential signals
are supported with programmable terminations. The terminations can be programmed
from the User FPGA to be active or open.

The TTL IO is supported with open drain drivers with pull-ups. The receive side is also
buffered to protect the User FPGA device. The pull-ups are referenced to a shunt
selectable 3.3V or 5V. Data Out, Data In, and Data Enable controls for each IO. If Data
Enable is programed to switch with Data Out the device will act as open drain. If set to
Enabled or Disabled and Data Out operated independently the interface will be push-
pull with 24mA source and sink for higher bandwidth than the open drain configuration.

The reference design has a pin configuration file, which can be reused for your specific
implementation. The reference design is written in VHDL. For initial development and
potentially as part of your system the D100 cable and the HDEterm100 are
recommended. The HDEterm100 serves as a breakout from the cable to screw
terminal block. The HDEterm100 has matched length, differential routing and several
termination options that can be installed. For more information on the HDEterm100
please visit the web page https://www.dyneng.com/HDEterm100.html

Clocking options in the User FPGA are supported with 8 PLL devices. The PLLs are
programmable with a frequency description file. The PLLs are programmed via the
User FPGA. The reference design has an interface to the PLLs implemented along with
software to load the PLLs with the requested frequency file.

The User FPGA is connected to the 50 MHz GPB clock and 133.33 MHz oscillator plus
the PLLs. Locally generated frequencies or one of the clock inputs can be routed to the
PLLs. The reference design divides the 133.33 to provide 66.666 to the PLLs. The
references can be unique if desired. The PLLs are Cypress 22393 devices. Cypress
has a utility available for calculating the frequency control words for the PLLs. The
PLLs respond to one of two addresses [only one works]. Our test SW “discovers” the
working address and then uses that address to program the PLL, read-back, and run
frequency tests.

 Embedded Solutions Page 11 of 55

Figure 2 PCIe-Spartan-VI Reference design Block diagram

Theory of Operation
A wide range of interfaces and protocols can be implemented with PCIe-Spartan-VI.
UART, Manchester encoding, serial or parallel, RS-422/485 or TTL, custom. The
interfaces can be created using the hardware and development tools provided with the
PCIe-Spartan-VI along with the AMD/Xilinx software.

The VHDL for the reference design is available The reference design was done with
the ISE 14.7. The reference design is intended to be the starting point for a client
design. The data lanes, GPB and other interfaces are implemented to allow the client to
focus on the IO interface. The drivers for PCIe-Spartan-VI provide DMA and target
accesses to the HW. The GPB interface is designed to use a passed in address rather
than one hard coded in the driver so the user can change the memory map and not
break the driver. The driver does put the address offset in so the client only needs to
add the local [User] offset to create the pointer to the register to read or write.

 Embedded Solutions Page 12 of 55

8 channels are implemented each with a pair of data lanes attached. The reference
design uses the 40 differential IO – 5 per channel. A simple nibble wide data transfer
engine with strobe is implemented. The local 20 MHz clock [internal DCM] is used.
The user design can remove the “end” code from the channel VHDL and replace with
your state-machine etc. If you need different IO counts or Channel counts etc. a little
editing will get you there. The code is commented, and the “find” command will help to
navigate to the origin of signals etc. Nothing is “black boxed” so you can see what is
being done and make changes as desired. While the VHDL is copyright to Dynamic
Engineering, it is a purchase once and use many license. It is intended to be used, and
reused by our clients. We want our clients to succeed, and try to keep the path to
success open.

Once your requirements are known the design can be implemented with VHDL, Verilog,
or schematics and compiled with the design software. The output file can then be
“uploaded” to the User FPGA on PCIe-Spartan-VI. Because the FPGA can be re-
loaded, your design can be implemented in phases. You can experiment and test out
concepts and partial implementations during the design phase or perhaps simulate
other hardware that needs to be implemented.

As an example, consider a serial interface with 8 channels. PCIe-Spartan-VI has 40
differential IO. Enough IO for 8 full duplex channels with a clock reference and two
controls per channel. PCIe-Spartan-VI has 16 FIFOs with 8 oriented for transmitting
data and 8 for receiving data, plus 8 PLLs. Each channel can be supported completely
and independently. The User design could be based on the reference design; in which
case the PLL interface, basic FIFO interface, and bus decoding are taken care of in the
User FPGA plus all of the functions provided by the Bus Controller. The designer would
need to implement the IO interface.

The data flow for transmission is Host memory transferred into the Bus Controller TX
FIFO via DMA transfers. The data is transferred from the Bus Controller holding FIFOs
to the User FPGA Holding FIFOs with the transfer control state-machines. Each
channel is separately supported. The User FPGA side reports Almost Full and Full to
allow the transfer control to burst when the Bus Controller FIFO is not Almost Empty
and the User FIFO is not almost full. 100 MHz x8 per channel in each direction. The
user state machine would read the data from the FIFO on the User FPGA side and
apply the user protocol before transmitting. On the receive side, the data will flow into
the User FPGA, be processed to convert to a format suitable for storing, and be written
into the associated channels’ Rx FIFO. The data would be pushed from the User to the
Bus Controller channel Rx FIFO using similar controls to the TX path. Almost Full and
Full flags coming from the Bus Controller in this case. The DMA engine automatically
senses the data in the channel FIFO and moves to the host memory [assuming DMA is
set-up].

Flow control throughout. Arbitration within the Bus Controller to handle the 16 DMA

 Embedded Solutions Page 13 of 55

engines automatically. Scatter Gather DMA is supported for arbitrarily large data
transfers. Large segments are allowed for OS with larger segment sizes [Linux
compared to Windows®]. One interrupt per DMA at the end.

Other reference design features: The PLL i2c interface is provided with a state-machine
rather than “bit banging”. Two FIFOs are provided to allow a complete PLL
programming file to be loaded and transmitted to the intended PLL. PLL programming
data can be retrieved from the selected PLL and stored into the receive FIFO.
ACK/NAK status can be used to determine the address for the PLL. Reference
software in the “UserAp” code that comes with each driver type.

Besides removing the overhead of the CPU doing the bit banging an advantage of this
approach is the PLL being programmed more rapidly. The i2c SM can send the bits at
the maximum rate the PLL is rated for. It is difficult to manage this in SW resulting in
longer than necessary programming times.

The decoder shown in the diagram interfaces with the GPB to generate READ and
LOAD pulses. To implement a register, tie the LOAD to the clock enable, DataIn to the
D inputs and the reference clock to the clock. To read-back, enable the corresponding
mux path with the READ strobe. There are 180 of each type of strobe available. The
reference design allocates 0-19 to the base design, and the rest to the channels.
Channel 0 using 20-39. Channel 1 using 40-59 etc. 20 – 32 bit decodes per port is
frequently enough.

 Embedded Solutions Page 14 of 55

Feature List Current
• User Defined Spartan VI series FPGA
• DMA and target accesses
• 16 FIFO based data lanes – 8 dedicated “RX” and 8 dedicated “TX”
• 40 fully programmable RS485/422 or LVDS IO
• 12 TTL IO
• 8 PLLs each with 3 clocks supplied to Spartan VI
• 8 position "DIP Switch"
• User LEDs
• Power LEDs
• FLASH and SW loading of User FPGA

As Dynamic Engineering adds features to the hardware, we will update the PCIe-
Spartan-VI page on the Dynamic Engineering website. If you want some of the new
features, and have already purchased hardware, we will support you with a FLASH
update.

VendorId = xDCBA
CardId = x0077.

 Embedded Solutions Page 15 of 55

Programming
PCIe-Spartan-VI is tested in a Windows environment. We use the Dynamic
Engineering Driver to do the low level accesses to the hardware. We use MS Visual
Studio in conjunction with the driver to write our test software. Please consider
purchasing the engineering kit for the PCIe-Spartan-VI; the software kit includes our test
suite. In addition, Linux reference suites are available

The drivers take care of discovery and the UserAp allows the client to select which
installed board is selected for use.

If you are writing your own driver it is suggested to get the engineering kit and the Linux
version of the SW. Usually, the defines and perhaps some of the code can be reused in
your effort.

The following pages have the memory maps and bit maps for the Bus Controller “fixed”
features and User FPGA reference design features. The User FPGA memory map is
subject to change as you implement your design.

 Embedded Solutions Page 16 of 55

Address Map

Controller Base Address Map
PcieSpartanVI_BASE_BASE 0x0000 // 0 Base control register
PcieSpartanVI _BASE_USER_SWITCH 0x0004 // 1 User switch read port DIP switch read
PcieSpartanVI _BASE_XILINX_REV 0x0004 // 1 Xilinx revision read port
PcieSpartanVI _BASE_XILINX_DSN 0x0004 // 1 Xilinx Design Number read port
PcieSpartanVI _BASE_STATUS 0x0008 // 2 status Register offset
PcieSpartanVI _BASE_JTAG 0x000C // 3 JTAG interface Port

PcieSpartanVI _CH0 0x0050 // 20 starting address for channel 0
PcieSpartanVI _CH1 0x00A0 // 40 starting address for channel 1
PcieSpartanVI _CH2 0x00F0 // 60 starting address for channel 2
PcieSpartanVI _CH3 0x0140 // 80 starting address for channel 3
PcieSpartanVI _CH4 0x0190 // 100 starting address for channel 4
PcieSpartanVI _CH5 0x01E0 // 120 starting address for channel 5
PcieSpartanVI _CH6 0x0230 // 140 starting address for channel 6
PcieSpartanVI _CH7 0x0280 // 160 starting address for channel 7

Figure 3 PCIe-Spartan-VI Controller Base Address Map

The address map provided is for the local decoding performed within PCIe-Spartan-VI
Bus Controller. The addresses are all offsets from a base address. The base address
and interrupt level is provided by the host in which the PCIe-Spartan-VI is installed.

Controller Port Address Map
PcieSpartanVI _CHAN_CNTRL 0x00000000 // 0 General control register
PcieSpartanVI _CHAN_STATUS 0x00000004 // 1 Interrupt status port
PcieSpartanVI _CHAN_INT_CLEAR 0x00000004 // 1 Interrupt clear port
PcieSpartanVI _CHAN_WR_DMA_PNTR 0x00000008 // 2 Write DMA dpr physical PCI address
PcieSpartanVI _CHAN_TX_FIFO_COUNT 0x00000008 // 2 Tx FIFO count read port
PcieSpartanVI _CHAN_RD_DMA_PNTR 0x0000000C // 3 Read DMA dpr physical PCI address
PcieSpartanVI _CHAN_RX_FIFO_COUNT 0x0000000C // 3 Rx FIFO count read port
PcieSpartanVI _CHAN_FIFO 0x00000010 // 4 FIFO offset for single word access R/W
PcieSpartanVI _CHAN_TX_AMT 0x00000014 // 5 Tx almost empty count register - used

for Urgent and pulsed interrupt
PcieSpartanVI _CHAN_RX_AFL 0x00000018 // 6 Rx almost full count register
PcieSpartanVI _CHAN_TX_AMT_LVL 0x00000028 // 10 Tx almost empty level register - used

for level based FIFO interrupt
PcieSpartanVI _CHAN_RX_AFL_LVL 0x00000040 // 16 Rx almost full level register

Figure 4 PCIe-Spartan-VI Controller Port Address Map

There are 8 channels each with the memory map shown above. The offset to each
channel relative to the base address as shown in the Base Address Map. Decodes 0-
19 are reserved for the Base, 20-39 to channel 0, 40-59 to channel 1 etc.

 Embedded Solutions Page 17 of 55

The host system will enumerate to find the assets installed during power-on
initialization. Interrupts are requested by the configuration space. Third party utilities
can be useful to see how your system is configured. The interrupt level expected and
style is also set in the registry. Dynamic Engineering recommends using the Dynamic
Engineering Driver to take care of initialization and device registration.

Once the initialization process has occurred, and the system has assigned an address
range to PCIe-Spartan-VI, software will need to determine what the address space is.
We refer to this address as base in our software.

The next step is to initialize PCIe-Spartan-VI. The local Controller registers need to be
configured as well as the registers within the User FPGA.

The following address maps for the User FPGA are based on the reference design.
Your design implementation may change the addresses and bitmaps.

User Base Address Map
PcieSpartanVI_BASE_USER_ACCESS 0x8000 // PcieSpartanVI Base Set Addr(15) to use 32K

dedicated to User control bus
PcieSpartanVI_USER_BASE 0x0000 // 0 User base address for PLL access
PcieSpartanVI_USER_LED 0x0004 // 1 User address for LED access Bit 4 enables

to SW control
PcieSpartanVI_USER_STATUS 0x0008 // 2 User address for Status Register in Base
PcieSpartanVI_USER _TTL_DAT 0x0010 // 4 User address for TTL Data output and read-

back of IO level 11-0
PcieSpartanVI_USER _TTL_EN 0x0014 // 5 User address for TTL Data Enables 11-0
PcieSpartanVI_USER_CNT 0x001C // 7 PcieSpartanVI Base Write Master Count,

Read selected count
PcieSpartanVI_USER_PLL_FIFO 0x0028 // 10 User address for PLL FIFO
PcieSpartanVI_USER_CH_0 0x0050 // 20 User address pointer offset for channel 0
PcieSpartanVI_USER_CH_1 0x00A0 // 40 User address pointer offset for channel 1
PcieSpartanVI_USER_CH_2 0x00F0 // 60 User address pointer offset for channel 2
PcieSpartanVI_USER_CH_3 0x0140 // 80 User address pointer offset for channel 3
PcieSpartanVI_USER_CH_4 0x0190 // 100 User address pointer offset for channel 4
PcieSpartanVI_USER_CH_5 0x01E0 // 120 User address pointer offset for channel 5
PcieSpartanVI_USER_CH_6 0x0230 // 140 User address pointer offset for channel 6
PcieSpartanVI_USER_CH_7 0x0280 // 160 User address pointer offset for channel 7

Figure 5 PCIe-Spartan-VI User Base Address Map

 Embedded Solutions Page 18 of 55

User Port Address Map
PcieSpartanVI_USER _CH_BASE 0x0000 // 0 User address for Base Register
PcieSpartanVI_USER _CH_STATUS 0x0004 // 1 User address for Status
PcieSpartanVI_USER _CH_SP 0x0008 // 2 User address for Spare Register
PcieSpartanVI_USER _UB_FIFO_CNT 0x000C // 3 User address for User to Cont FIFO Count
PcieSpartanVI_USER _BU_FIFO_CNT 0x0010 // 4 User address for Cont to User FIFO Count
PcieSpartanVI_USER _FIFO_WR 0x0014 // 6 User address for Writing RX FIFO
PcieSpartanVI_USER _FIFO_RD 0x0018 // 6 User address for Reading TX FIFO

Figure 6 PCIe-Spartan-VI User Port Address Map

Dynamic Drivers provide a GPB write and GPB read utility which allows the user to pass
an offset and data to write or an offset to read and return a LW. The utility assumes the
offset to the User FPGA. User SW can use the above definitions or self-defined
mapping to build a pointer to the intended offset. For example:
PcieSpartanVI_USER_CH_7 + PcieSpartanVI_USER_CH_STATUS is the offset for the
Status register in channel 7 of the User FPGA.

 Embedded Solutions Page 19 of 55

Register Definitions

Bus Controller Base Register Definitions

PcieSpartanVI_BASE_BASE
[0x0000 Main Control Register Port read/write]

 BASE REGISTER
 DATA BIT DESCRIPTION

 0 BASE_USER_INT_MASK
 1 BASE_USER_LOAD_USER
 2 BASE_USER_LOAD_FLASH
 3 BASE_USER_LOAD_USERDN

 14 BASE_USER_PGM_RST
 15 BASE_USER_RST

Figure 7 PCIe-Spartan-VI Xilinx Base Control Register

BASE_USER_INT_MASK : Set to enable interrupt from User device. Default is
disabled. When ‘1’ the master enable is “enabled”.

This version of the design will implement JTAG programming of the User FPGA and
FLASH. The definitions etc. are TBD. Ported from the D20MX and ASCB designs.

BASE_USER_RST: Set to reset User device low to enable

 Embedded Solutions Page 20 of 55

PcieSpartanVI_BASE_ID
[0x04 Switch and Design number port read only]
 DATA BIT DESCRIPTION
 31-24 Design Revision
 23-16 Design Number
 15-8 PCI Core Revision
 7-0 DIP switch

Figure 8 PCIe-Spartan-VI Xilinx ID Register

The ID register is made up of the DIP switch port plus design revision and design
number.

The DIP Switch is labeled for bit number and ‘1’ ‘0’ in the silk screen. The DIP Switch
can be read from this port and used to determine which PCIe-Spartan-VI is which in a
system with multiple cards installed. The DIP switch can also be used for other
purposes – software revision etc. The switch shown would read back 0x12.

The Design Number and Design Revision allow for 256 Xilinx versions with 256
revisions of each. The standard Design Number x1 and the current revision is 0x01.

The PCI revision is the revision of the core in use. It is unlikely to change. The board
ID can also be updated for clientized versions to allow drivers to differentiate between
revisions and applications.

1

7 0

0

 Embedded Solutions Page 21 of 55

 PcieSpartanVI_BASE_STATUS
[0x0008 status register read only]

STATUS REGISTER

 DATA BIT DESCRIPTION

 31-18 Spare
 17 User FPGA Load Status
 16-10 Spare
 9 User Int Masked
 8 User Int
 7 Ch7 Int Status
 6 Ch6 Int Status
 5 Ch5 Int Status
 4 Ch4 Int Status
 3 Ch3 Int Status
 2 Ch2 Int Status
 1 Ch1 Int Status
 0 Ch0 Int Status

Figure 9 PCIe-Spartan-VI Status Port

The masks for the Controller Port interrupts are in the Port. When Ch(0:7) Int Status
are set an interrupt is pending from the channel or channels indicated.

The User FPGA can generate an interrupt request. A second mask is provided within
the Controller for this Interrupt request to allow for polling. See the Controller Base
Register. User Int is the unmasked signal. User Int Masked is the version to check for
an active interrupt, and is after the mask.

User FPGA Load Status is tied to the Done bit from the User FPGA. Done will be
asserted low during programming and return high once completed.

 Embedded Solutions Page 22 of 55

 PcieSpartanVI_BASE_JTAG
[0x000C program the Altera storage FIFO and status]

 DATA BIT DESCRIPTION

 31 MUX select
 30-4 spare
 3 TDO
 2 TMS
 1 TCK
 0 TDI

Figure 10 PCIe-Spartan-VI Programming port

TDI is set or cleared to create the data pattern to load JTAG data into the TDI pin on the
User device. TCK and TMS are used in conjunction with TDI to create the
programming stream. If programming the QSPI the FPGA will need to be programmed
with the JTAG to QSPI module – automatic from the Impact program.

TDO is synchronized to the local clock and available for read-back.

The MUX Select when ‘0’ provides a path from the Header to the User device for direct
programming from the platform programming adapter. When set to ‘1’ the mux provides
a path from this device to the User FPGA allowing the User device to be programmed
directly or the data stored into QSPI to load at power up.

The reference design has a different pattern on the User LEDs than the reference file
provided with the UserAp. The UserAp test menu has two functions to allow user file
loading and reloading from FLASH. The file name is entered as a string including the
path. If you store the file with the UserAp executable PcieSpartanViUserAp.exe no
path will be needed. The string look-up can be automated to provide other
functionality; loading when Main is launched for example. This method can be used for
remote site updates.

 Embedded Solutions Page 23 of 55

Bus Controller Port Register Definitions

PcieSpartanVI_CH_CNTRL
[0x0000 read/write]

Channel Control Register
DESCRIPTION Bit

CNTRL_TX_FIFO_RST 0x00000001 //0 set to clear FIFO’s
CNTRL_RX_FIFO_RST 0x00000002 //1 set to clear FIFO’s
CNTRL_FF_TEST 0x00000004 //2 bypass mode
CNTRL_MINTEN 0x00000008 //3 channel interrupt enable

CNTRL_FORCE_INT 0x00000010 //4 channel based force interrupt function
CNTRL_DMA_WREN 0x00000020 //5 DMA interrupt enable burst in
CNTRL_DMA_RDEN 0x00000040 //6 DMA interrupt enable burst out
CNTRL_DMA_INURGENT 0x00000080 //7 DMA prioritize DMA in

CNTRL_DMA_OUTURGENT 0x00000100 //8 DMA prioritize DMA out

CNTRL_PAC4_TXSTART 0x00010000 //16 enable Tx State machine
CNTRL_PAC4_RXSTART 0x00020000 //17 enable Rx State Machine
CNTRL_PAC4_TX_FF_AMT_INT 0x00040000 //18 enable Transmit FIFO Almost Empty

Interrupt based on Pulse
CNTRL_PAC4_RX_FF_AFL_INT 0x00080000 //19 enable Receive FIFO Almost Full

Interrupt based on Pulse

CNTRL_PAC4_OFL_INT 0x00100000 //20 enable Receive OverFlow interrupt
CNTRL_PAC4_TX_FF_AMT_INT_LVL 0x00200000 //21 enable Transmit FIFO Almost Empty

Interrupt based on Level
CNTRL_PAC4_RX_FF_AFL_INT_LVL 0x00400000 //22 enable Receive FIFO Almost Full

Interrupt based on Level
Figure 11 PCIe-Spartan-VI Controller Channel Control Register

CNTRL_TX_FIFO_RST and CNTRL_RX_FIFO_RST when set ‘1’ cause the respective
memories to be reset to the empty state. Clear to ‘0’ for normal operation.

CNTRL_FF_TEST when set ‘1’ routes data from the TX FIFO to the RX FIFO for loop-
back testing within the Controller. Can be used with DMA or target accesses.
Examples of how to operate are in the reference software.

CNTRL_MINTEN is the master interrupt enable. This bit needs to be set to have the
particular channel able to cause an interrupt. In addition, individual masks for the
interrupts are provided.

CNTRL_FORCE_INT when set causes an interrupt from the channel. Useful for
debugging and checking interrupt handling software.

 Embedded Solutions Page 24 of 55

CNTRL_DMA_WREN [Burst In] and CNTRL_DMA_RDEN [Burst Out] when set enable
DMA interrupts to be active. BurstIn refers to data coming from system memory to
PCIe-Spartan-VI and BurstOut refers to data going to system memory.

CNTRL_INURGENT and CNTRL OUTURGENT are control bits which can provide
additional priority to this channel relative to other channels. Usually not used, but can
be useful when one channel has higher priority than the others.

CNTRL_PAC4_TX_FF_AMT_INT and CNTRL_PAC4_RX_FF_AFL_INT when set
enable interrupts based on the FIFO level transition. From not Almost Full to Almost
Full for the RX FIFO, and/or not Almost Empty to Almost Empty for the TX FIFO.
These interrupts can be handy if using small DMA transfers that need to be managed.
The interrupts are cleared by writing to the associated status register “sticky” bits.

CNTRL_PAC4_OFL_INT enables the interrupt on receive FIFO overflow. This
condition is in theory “impossible” since there is HW flow control.

CNTRL_PAC4_TX_FF_AMT_INT_LVL and CNTRL_PAC4_RX_FF_AFL_INT_LVL
when set enable interrupts based on the FIFO level. When Almost Full for the RX FIFO
and/or Almost Empty for the TX FIFO. These interrupts can be handy if using small
DMA transfers that need to be managed. These interrupts stay set until the level is
returned above or below the threshold. The masks can be used to disable.

CNTRL_PAC4_TXSTART and CNTRL_PAC4_RXSTART enable the data transfer
state-machines for the transmit [to User] and receive [from User] byte lanes. Normally
both are enabled. For some test situations one or both can be disabled.

No interrupts are associated with the state-machines directly. Interrupts are available
for the completion of a DMA or based on programmable FIFO levels to allow for user
control.

 Embedded Solutions Page 25 of 55

PcieSpartanVi_CH_STATUS
[0x004 read/write]

Channel Control Register
DESCRIPTION Bit

STAT_TX_FIFO_MT 0x00000001 //0 set when TX FIFO is empty
STAT_TX_FIFO_AE 0x00000002 //1 set when TX FIFO is Almost Empty
STAT_TX_FIFO_FULL 0x00000004 //2 set when TX FIFO is Full

STAT_RX_FIFO_MT 0x00000010 //4 set when RX FIFO is Empty
STAT_RX_FIFO_AF 0x00000020 //5 set when RX FIFO is Almost Full
STAT_RX_FIFO_FULL 0x00000040 //6 set when RX FIFO is Full

STAT_TX_AMT_INT 0x00000100 //8 Transmit Almost Empty Int Occurred
STAT_RX_AFL_INT 0x00000200 //9 Receive Almost Full Int Occurred
STAT_TX_FF_INT_LAT 0x00000400 //10 Transmit Almost Full Int Occurred
STAT_RX_FF_INT_LAT 0x00000800 //11 Receive Almost Full Int Occurred

STAT_BURSTIN_ERR 0x00001000 //12 write DMA error
STAT_BURSTOUT_ERR 0x00002000 //13 read DMA error
STAT_WR_DMA_INT 0x00004000 //14 write DMA Interrupt
STAT_RD_DMA_INT 0x00008000 //15 read DMA Interrupt

STAT_RX_OVFL_LAT 0x00080000 //19 Rx OverFlow Latched

STAT_BO_IDLE 0x00400000 //22 Burst Out Idle
STAT_BI_IDLE 0x00800000 //23 Burst In Idle

LOC_INT 0x40000000 //30 channel interrupt
STAT_INT_ACTIVE 0x80000000 //31 channel interrupt is active

Figure 12 PCIe-Spartan-VI Controller Channel Status Register

Transmit FIFO Empty: When a one is read, the transmit data FIFO contains no data;
when a zero is read, there is at least one data word in the FIFO.

Transmit FIFO Almost Empty: When a one is read, the number of data words in the
transmit data FIFO is less than or equal to the value written to the TX_AMT_LVL
register; when a zero is read, the FIFO level is more than that value.

Transmit FIFO Full: When a one is read, the transmit data FIFO is full; when a zero is
read, there is room for at least one more data word in the FIFO.

Please note with the Receive side status; the status reflects the state of the FIFO and
does not take the 4 deep pipeline into account. For example, the FIFO may be empty
and there may be valid data within the pipeline. The data count is the combined FIFO
and pipeline value and can be used for read size control.

 Embedded Solutions Page 26 of 55

Receive FIFO Empty: When a one is read, the receive data FIFO contains no data;
when a zero is read, there is at least one data word in the FIFO.

Receive FIFO Almost Full: When a one is read, the number of data words in the receive
data FIFO is greater or equal to the value written to the RX_AFL_LVL register; when a
zero is read, the FIFO level is less than that value.

Receive FIFO Full: When a one is read, the receive data FIFO is full; when a zero is
read, there is room for at least one more data-word in the FIFO.

STAT_TX_AMT_INT: When a one is read, the transmit FIFO almost empty is asserted.
This is a level based interrupt. The status is before the mask to allow for non-interrupt
driven SW operation. When the FIFO level is below the programmed level this bit is
asserted.

STAT_TX_FF_INT_LAT: When a one is read, the transmit FIFO almost empty has been
asserted. This is a triggered interrupt. The status is before the mask to allow for non-
interrupt driven SW operation. When the FIFO level has dropped below the
programmed level the status is captured and held. Clear by writing back to this bit.

STAT_RX_AFL_INT: When a one is read, the receive FIFO almost full is asserted. This
is a level based interrupt. The status is before the mask to allow for non-interrupt driven
SW operation. When the FIFO level is above the programmed level this bit is asserted.

STAT_RX_FF_INT_LAT: When a one is read, the receive FIFO almost full has been
asserted. This is a triggered interrupt. The status is before the mask to allow for non-
interrupt driven SW operation. When the FIFO level has risen the programmed level the
status is captured and held. Clear by writing back to this bit.

Write/Read DMA Error Occurred: [STAT_BI_ERR, STAT_BO_ERR] When a one is
read, a write or read DMA error has been detected. This will occur if there is a target or
master abort or if the direction bit in the next pointer of one of the chaining descriptors is
incorrect. A zero indicates that no write or read DMA error has occurred. These bits
are latched and can be cleared by writing back to the Status register with a one in the
appropriate bit position.

BO and BI Idle [STAT_BO_IDLE, STAT_BI_IDLE] are Burst Out and Burst In IDLE state
status for the Receive and Transmit DMA actions. The bits will be 1 when in the IDLE
state and 0 when processing a DMA. A new DMA should not be launched until the
State machine is back in the IDLE state. Please note that the direction implied in the
name has to do with the DMA direction – Burst data into the card for TX and burst data
out of the card for Receive.

 Embedded Solutions Page 27 of 55

Write/Read DMA Interrupt Occurred: [STAT_WR_DMA_INT, STAT_RD_DMA_INT]
When a one is read, a write/read DMA interrupt is latched. This indicates that the
scatter-gather list for the current write or read DMA has completed, but the associated
interrupt has yet to be processed. A zero indicates that no write or read DMA interrupt
is pending.

Channel Interrupt Active: When a one is read, it indicates that a system interrupt is
potentially asserted caused by an enabled channel interrupt condition. A zero indicates
that no system interrupt is pending from an enabled channel interrupt condition. The
Board level master interrupt enable will also need to be asserted to allow the active
channel interrupt to become an interrupt request.

Local Interrupt: When a one is read, it indicates that any of the masked conditions other
than DMA are active and enabled. Local Interrupt is or’d with the DMA interrupt sources
to create the Channel Interrupt Active signal and to request the Interrupt.

STAT_RX_OVFL_LAT is set if the RX FIFO is overwritten. Should never occur as
there is flow control in place. However, since this is a user design it is possible for user
changes to break the flow control. Clear by writing back with this bit set.

PcieSpartanVi_CH_WR_DMA_PNTR
[0x008 Write only]

DMA Pointer Address Register

 Data Bit Description
 31-2 First Chaining Descriptor Physical Address
 1 direction [0]
 0 end of chain

Figure 13 PCIe-Spartan-VI Controller Channel Write DMA Register

This write-only port is used to initiate a scatter-gather write [TX] DMA. When the
address of the first chaining descriptor is written to this port, the DMA engine reads
three successive long words beginning at that address. Essentially this data acts like a
chaining descriptor value pointing to the next value in the chain.

The first is the address of the first memory block of the DMA buffer containing the data
to read into the device, the second is the length in bytes of that block, and the third is
the address of the next chaining descriptor in the list of buffer memory blocks. This
process is continued until the end-of-chain bit in one of the next pointer values read
indicates that it is the last chaining descriptor in the list.

 Embedded Solutions Page 28 of 55

All three values are on LW boundaries and are LW in size. Addresses for successive
parameters are incremented. The addresses are physical addresses the HW will use
on the PCI bus to access the Host memory for the next descriptor or to read the data to
be transmitted. In most OS you will need to convert from virtual to physical. The length
parameter is a number of bytes, and must be on a LW divisible number of bytes.

Status for the DMA activity can be found in the channel control register and channel
status register.

Notes:

1. Writing a zero to this port will abort a write DMA in progress.
2. End of chain should not be set for the address written to the DMA Pointer

Address Register. End of chain should be set when the descriptor follows the
last length parameter.

3. The Direction should be set to ‘0’ for Burst In DMA in all chaining descriptor
locations.

 Embedded Solutions Page 29 of 55

PcieSpartanVI_CH_RD_DMA_PNTR
[0x00C Write only]

DMA Pointer Address Register

 Data Bit Description
 31-2 First Chaining Descriptor Physical Address
 1 direction [1]
 0 end of chain

Figure 14 PCIe-Spartan-VI Controller Channel Read DMA Register

This write-only port is used to initiate a scatter-gather read [RX] DMA. When the
address of the first chaining descriptor is written to this port, the DMA engine reads
three successive long words beginning at that address. Essentially this data acts like a
chaining descriptor value pointing to the next value in the chain.

The first is the address of the first memory block of the DMA buffer to write data from
the device to, the second is the length in bytes of that block, and the third is the address
of the next chaining descriptor in the list of buffer memory blocks. This process is
continued until the end-of-chain bit in one of the next pointer values read indicates that it
is the last chaining descriptor in the list.

All three values are on LW boundaries and are LW in size. Addresses for successive
parameters are incremented. The addresses are physical addresses the HW will use
on the PCI bus to access the Host memory for the next descriptor or to read the data to
be transmitted. In most OS you will need to convert from virtual to physical. The length
parameter is a number of bytes, and must be on a LW divisible number of bytes.

Status for the DMA activity can be found in the channel control register and channel
status register.

Notes:

1. Writing a zero to this port will abort a write DMA in progress.
2. End of chain should not be set for the address written to the DMA Pointer

Address Register. End of chain should be set when the descriptor follows the
last length parameter.

3. The Direction should be set to ‘1’ for Burst Out DMA in all chaining descriptor
locations.

 Embedded Solutions Page 30 of 55

PcieSpartanVI_CH_TX_FIFO_CNT
[0x008 Port Read only]

TX FIFO Data Count Port

 Data Bit Description
 31-0 TX Data Words Stored

Figure 15 PCIe-Spartan-VI Controller Channel TX FIFO Count

This read-only register port reports the number of 32-bit data words in the transmit
FIFO. The TX FIFO has 8K locations.

PcieSpartanVI_CH_RX_FIFO_CNT
[0x00C Port Read only]

RX FIFO Data Count Port

 Data Bit Description
 31-0 RX Data Words Stored

Figure 16 PCIe-Spartan-VI Controller Channel RX FIFO Count

This read-only register port reports the number of 32-bit data words in the receive FIFO.
The pipeline for DMA processing has an additional 4 positions. The channel status
register contains the combined pipeline and FIFO count. This design has 8K+4
locations possible in the FIFO + pipeline.

 Embedded Solutions Page 31 of 55

PcieSpartanVI_CH_FIFO
[0x010 Port Read/Write]

RX and TX FIFO Port

 Data Bit Description
 31-0 FIFO data word

Figure 17 PCIe-Spartan-VI Controller Channel FIFO Access

This port is used to make single-word accesses into the TX and out of the RX FIFO.
Please note that reading is from the RX FIFO and writing is to the TX FIFO. Unless
Bypass mode is established the data will not match.

PcieSpartanVI_CH_TX_AMT
[0x014 Port Read/Write]

TX Almost-Empty Pulse Register

 Data Bit Description
 31-16 Spare
 15-0 TX FIFO Almost-Empty Level

Figure 18 PCIe-Spartan-VI Controller Channel TX Almost Empty Pulse

This read/write port accesses the transmitter almost-empty level register. When the
number of data words in the transmit data FIFO is less than this value, the almost-
empty status bit will be set. The register is R/W for 16 bits. The mask is valid for a size
matching the depth of the FIFO. Used for the Pulsed interrupt and “Urgent” processing.

 Embedded Solutions Page 32 of 55

PcieSpartanVI_CH_RX_AFL
[0x018 Port Read/Write]

RX Almost-Full Pulse Register

 Data Bit Description
 31-16 Spare
 15-0 RX FIFO Almost-Full Level

Figure 19 PCIe-Spartan-VI Controller Channel RX Almost Full Pulse

This read/write port accesses the receiver almost-full level register. When the number
of data words in the receive data FIFO is greater than this value, the almost-full status
bit will be set. The register is R/W for 16 bits. The mask is valid for a size matching the
depth of the FIFO. This value is applied to the entire FIFO chain [8K+4]. Used for the
Pulsed interrupt and “Urgent” processing.

PcieSpartanVI_CH_TX_AMT_LVL
[0x028 Port Read/Write]

TX Almost-Empty Level Register

 Data Bit Description
 31-16 Spare
 15-0 TX FIFO Almost-Empty Level

Figure 20 PCIe-Spartan-VI Controller Channel TX Almost Empty Level

This read/write port accesses the transmitter almost-empty level register. When the
number of data words in the transmit data FIFO is less than this value, the almost-
empty status bit will be set. The register is R/W for 16 bits. The mask is valid for a size
matching the depth of the FIFO. Used for the Level based interrupt.

 Embedded Solutions Page 33 of 55

PcieSpartanVI_CH_RX_AFL_LVL
[0x040 Port Read/Write]

RX Almost-Full Level Register

 Data Bit Description
 31-16 Spare
 15-0 RX FIFO Almost-Full Level

Figure 21 PCIe-Spartan-VI Controller Channel RX Almost Full Level

This read/write port accesses the receiver almost-full level register. When the number
of data words in the receive data FIFO is greater than this value, the almost-full status
bit will be set. The register is R/W for 16 bits. The mask is valid for a size matching the
depth of the FIFO. This value is applied to the entire FIFO chain [8K+4]. Used for the
Level based interrupt.

 Embedded Solutions Page 34 of 55

User FPGA Base Address Map

The User FPGA is completely programmable – the address map above and definitions
below only have meaning if the reference VHDL is used as a starting point for your
design. The reference software and reference User hardware implementation are used
to perform the ATP on each board prior to shipment. The Engineering kit can include
the HDEterm100 and a cable to interconnect the PCIe-Spartan-VI with the
HDEterm100. For more information, please refer to the web page.

PcieSpartanVI_BASE_USER_ACCESS defines the offset from the Xilinx base address
to the User Base address. Dynamic Drivers automatically include this offset. If you are
doing your own driver you will need to include this offset. All other offsets shown are
relative to the User base address.
PcieSpartanVI_USER_BASE
[0x000 Main Control Register Port read/write]

BASE REGISTER

 DATA BIT DESCRIPTION

 31-24 InstNum
 23 Spare
 22 ForceInt
 21 MIntEn
 20 ClrPll
 19-17 spare
 16 PLL Programming Enable
 15-8 Counter Select
 7-0 PLL_CLK_EN_(7..0)

Figure 22 PCIe-Spartan-VI User Base Control Register

PCIe-Spartan-VI has 8 PLL devices which are programmed to produce the desired
frequency with an i2c bus. Each PLL has a common data pin and independent clocks.
The PLLs also have independent references.

PLL_CLK_EN_(7..0).when set selects that PLL for loading or reading. Reading is
required to only have one PLL selected. Writing can be done in parallel or with
separate writes to each device. For parallel writes to work the address of each PLL
must be the same.

Counter Select is used to pick the counter to read-back with the “USER CNT” register.
Once the PLLs are programmed the outputs can be used to count and check if the
expected frequency is received.

 Embedded Solutions Page 35 of 55

The reference design contains the logic and software required to program the PLLs and
to read the programmed frequency back. The software to determine the frequency
command words is available from Cypress Semiconductor. The part number is
CY22393FXI. Cypress has a utility available for calculating the frequency control words
for the PLLs. https://www.dyneng.com/_Download/Utilities/CyberClocks.zip is the URL
for the Cypress software used to calculate the PLL programming words.

The PLLs respond to one of two addresses [only one works]. As part of the ATP the
reference software determines the address of each PLL and stores into an array. The
remaining functions within the PLL test section use the data from the array to access
each of the PLLs. Functions for loading, reading, comparing the read-back and
expected load pattern, plus counting and checking against the expected count are
provided. The software is part of the engineering kit and can be ported to your
application.

PLL Programming Enable when set (‘1’) enables the i2c state-machine to begin
operation. The state-machine will read the data from the FIFO and transfer to or read
from the selected PLL as directed by the initial instruction read from the FIFO. Please
refer to the “ALT PLL FIFO” section for the header information.

ClrPll when set ‘1’ resets the PLL interface – FIFOs etc. When ‘0’ the interface is in
standard mode. Can set and clear on consecutive GPB accesses.

MIntEn is the master interrupt enable for User FPGA. Default is disabled. When ‘1’ the
master enable is “enabled”.

ForceInt when ‘1’ and the MintEn is enabled causes an interrupt to be generated. This
bit is useful for software debugging.

Please note the Controller enable for the User Interrupt must also be enabled.

InstNum is a R/W field where the driver can store the instance of the board. Useful for
multiple board implementations.

 Embedded Solutions Page 36 of 55

PcieSpartanVI_USER_LED
 [0x004 read/write]

LED REGISTER

 DATA BIT DESCRIPTION

 31-5 spare
 4 LED Enable
 3 - 0 LED Control

Figure 23 PCIe-Spartan-VI User LED Control Register

LED Control when set (‘1’) and LED Enable is set (‘1’) causes the individual LEDs to be
illuminated. When ‘0’ the LED is off. When LED Enable is ‘0’ the LED pattern is
controlled by the HW strapped default. The FLASH based reference design is set to
“0x5”. Please note that the HW straps are counter-intuitive as the LED is on when ‘0’ is
supplied and off when ‘1’ is supplied. The SW path has the inversion built in. A second
version of the reference design has the pattern set to “0xA” so you have a visual for the
FPGA loading properly from the SW load as opposed to the FLASH load.

PcieSpartanVI_USER_STATUS
[0x008 Status Register read/write]

Status Register

 DATA BIT DESCRIPTION

 31-24 DesignId
 23-16 Int(7-0)
 15-11 spare
 10-8 PllPckDnCnt
 7 PllNakLat
 6 PllPacketDoneLat
 5 PllReadFifoMt
 4 PllWriteFifoMt
 3 PllIdle
 2 PllEn
 1 LocalInt
 0 spare

Figure 24 PCIe-Spartan-VI User Status Register

Int(7-0) when set indicate that a channel interrupt is pending. If the master interrupt is
enabled the interrupt request from the User flows through to the Controller where it can

 Embedded Solutions Page 37 of 55

be passed onto the system. If the master enable is not set the INTx status can be used
for polling. Additional masking is provided within the channels. INT0 is associated with
Channel 0 etc. LocalInt is set if any of the INTx bits are set [before the master interrupt
enable].

DesignId is set to allow the user software to read the Design Number and determine
how to interact with the design.

When PllEn is set the PLLCounting test is in operation. The test is started by writing the
control count to the master counter. When the master counter hits 0x00 the test
completes. PllEn is set while the counter is operating.

PllIdle is set when the PLL controller is in the IDLE state. This bit can be polled to track
status on the loading of the PLLs by the state-machine. Please note the state-machine
will pass through the IDLE state during multiple packet operations.

PllWriteFifoMt is ‘1’ when the FIFO associated with moving data to the PLL is empty.

PllReadFifoMt is ‘1’ when the FIFO associated with data read from the PLL is empty.
Please note: this FIFO will receive data when testing addresses etc.

PllPacketDoneLat is set and held when the PLL state-machine is done processing a
packet. The bit is held until the same bit is written to – that is write to the status port
with this bit ‘1’ to clear.

PllNakLat is set when the PLL does not respond to an access attempt. This is normal
during discovery and abnormal once the addresses are known. Clear by write-back to
the status port with this bit set.

PllPckDnCnt is a 3 bit field which is incremented when a packet completes. During
PLL programming address offsets are used which makes one load take more than one
packet. The count is useful for determining when the complete PLL programming cycle
has happened. Clear to 0x00 before using to check a load. Clear by ClrPll or writing
back to the status register and clearing the PllPacketDoneLat [also clears this field].

 Embedded Solutions Page 38 of 55

PcieSpartanVI_USER_TTL_DAT
[0x010 TTL Data Port read/write]

TTL Data Register

 DATA BIT DESCRIPTION

 11-0 TTL Data 11-0

Figure 25 PCIe-Spartan-VI TTL Data Register

The TTL data pattern written to this port will be loaded to the output side for the bits
enabled in the TTL_EN register. All bits when read are from the IO input. The IO may
or may not match the output definition depending on which bits are enabled and what is
connected on the IO side of the interface.

PcieSpartanVI_USERT_TTL_EN
[0x014 TTL Data Enable Port read/write]

485/LVDS IO REGISTERS

 DATA BIT DESCRIPTION

 11-0 TTL Data Enable

Figure 26 PCIe-Spartan-VI TTL Data Enable Register

The TTL IO each have individual enables. The bits set in this register are enabled to
drive onto the cable side. Please note that the enables are inverted in HW to provide
an active low enable at the ‘125 buffer devices. SW sets/reads as ‘1’ = enabled, ‘0’ =
disabled [read this bit from the cable]. If the designer enables the bits in this register the
IO are driven with 24 mA [drive / sink] buffers. If the bits are tied to the Output register
the IO will be enabled for active low and disabled for active high signals – open drain
operation. The reference for open drain operation is set by the header. The parts are
also sourced by the selected voltage.

 Embedded Solutions Page 39 of 55

Application Note: Spare IO
Frequently a system will need some dedicated IO but not all of the IO. The reference
design has all of the differential IO defined in the Channels, and all of the TTL IO
defined in the Base. The mix can easily be changed to put TTL in the channels or
Differential in the channels. “extra” IO can be used as a parallel port or other use. If
not used please tie off to be controlled as an input to reduce system noise and avoid
potential conflicts on the cabling.

PcieSpartanVI_USER_CNT
[0x01C Count read-back port]

Counter Port

 DATA BIT DESCRIPTION

 15-0 Count

Figure 27 PCIe-Spartan-VI Counter Results

There are 25 counters implemented to check the PLL programming. The Counter
results to read are selected in the User Base register and read from this register. The
0x00 selection is the control count which will be 0 at the test completion. 0x01
corresponds to [silk screen] PLL1 output A. 0x02 to PLL1 output B etc, 0x18 = PLL8
output C.

The reference software has two counting tests. One test programs the PLLs to convert
the 66.666 reference to 10 MHz on all channels and checks that all are within tolerance.
The second test programs the PLLs to all different frequencies 10-33 MHz and again
checks for the expected frequency to be measured via count. Most designs won’t need
this logic. It can be removed to create space in the FPGA if you are using the majority
of the FPGA assets.

Design note: all 24 clocks are on FPGA clock inputs. Please see the PLL pin
definitions in the pinout table. You may want to do some floor planning to have the
clocks in the same vicinity as the logic. If only using a few clocks this is not necessary.

 Embedded Solutions Page 40 of 55

PcieSpartanVI_USER_PLL_FIFO
[0x028 PLL Data R/W port]

TTL IO REGISTERS

 DATA BIT DESCRIPTION

 31-0 Data to/from PLL

Figure 28 PCIe-Spartan-VI PLL FIFO

The transmit FIFO is monitored by the PLL state-machine. When the FIFO is written to
the first word is read by the state-machine and parsed. The first word contains the
mode on bit 0, address on 7-1, length on 15-8 [1-255], and the first byte or two to
transfer. If multiple bytes – 3 or more are to be transferred the SW will need to make
sure the data is in the FIFO for the 2nd LW before the end of the processing of the 2nd
byte or an underflow condition will be detected. If your system timing is tough to
manage it is suggested to disable the SM, load the FIFO and then enable the SM. A
status bit for the idle condition is available to allow SW to know when the SM has
responded to the disable.

The Length is the number of bytes in the data portion of the message + 1.

Please note: The PLLs have two data sets written to two address offsets per PLL
programmed. The UserAp automatically converts the .jed file from the Cypress tool
and generates the local buffers with the hex data to load to the PLL. The application
software loads the FIFO with the correct address, length and data x2 for a complete
programming operation.

The State-machine will parse the message and write or read based on bit 0. In either
case the address and R/W are transmitted. An ACK is looked for from the Target. If a
Write the data is then transmitted with the ACK being checked after each byte.
Clocking is continuous until the message is completed. If a read is implemented, clocks
are generated without data after the address. Data is captured during the high portion
of the clock cycle, and the Master asserts the ACK until the last byte where a NAK is
asserted. Data is stored into the receive FIFO in this case.

The reference software has examples of working with the PLLs and controlling HW.

 Embedded Solutions Page 41 of 55

User Channel Address Map

PcieSpartanVI_USER_CH_BASE
[0x000 Main Control Register Port read/write]

Channel Base Register

 DATA BIT DESCRIPTION
 31-25 spare
 24 RxIoEn
 23 TxIoEn
 22 RxFfAFlIntEnLvl
 21 TxFfAMtIntEnLvl
 20 spare
 19 RxFfIntEn
 18 TxFfIntEn
 17 RxStart
 16 TxStart
 15-5 spare
 4 IntForce
 3 MIntEn
 2 Bypass
 1 RxRst
 0 TxRst

Figure 29 PCIe-Spartan-VI Channel Base Register

TxRst When set (‘1’) causes Tx HW to be reset. FIFOs , state-machines etc.

RxRst when set (‘1’) causes Rx HW to be reset including FIFOs etc.

Bypass when set (‘1’) causes the HW to transfer data from the input data lane FIFO to
the output data lane FIFO. The reference software has a loop-back test checking this
data path. It is a good indicator that the User FPGA is properly loaded and the data
lanes are functional. It is recommended to keep this logic in place to allow for BIT.

MIntEn when set (‘1’) allows the enabled channel status to cause interrupts via the
connection to the Bus Controller. The Master in the Bus Controller also needs to be set
for this to work.

IntForce when set ‘1’ and MintEn is set, causes an interrupt to be requested. Mainly
used as a development tool to check interrupt paths and to simulate conditions when
the external system is not in place.

TxStart when set enables data transfer via IO in the Bus Controller to User direction.
Transmitting to external system.

 Embedded Solutions Page 42 of 55

RxStart when set enables data transfer via IO in the User to Bus Controller direction.
Receiving from external system.

Please note: the Tx and Rx directions are independent byte lanes. Also, when Bypass
is enabled the IO paths are automatically disabled.

TxFfIntEn when set enables the Tx direction FIFO Interrupt. The tx FIFO interrupt is
latched [available in Status register] and triggered by the Tx FIFO going Almost Empty.
If DMA is not used or if smaller DMA transfers are used this interrupt can be useful to
trigger a new data transfer in the TX direction.

RxFfIntEn when set enables the Rx direction FIFO Interrupt. The Rx FIFO interrupt is
latched [available in Status register] and triggered by the Rx FIFO going Almost Full. If
DMA is not used or if smaller DMA transfers are used this interrupt can be useful to
trigger a new data transfer in the RX direction.

Please see the status port for more information about the clearing of interrupt
conditions.

TxFfAMtIntEnLvl when set enables the level based interrupt for the Tx FIFO Almost
Empty condition. Since it is level controlled, the interrupt is cleared by adding more
data to the FIFO or by disabling this enable. Since this is the data lane FIFO the write
will be through the associated Bus Controller channel. Defined for future
implementation or client use. Unused in reference design.

RxFfAFlIntEnLvl when set enables the level based interrupt for the Rx FIFO Almost Full
condition. Since it is level controlled, the interrupt is cleared by adding reading data
from the FIFO or by disabling this enable. Since this is the data lane FIFO the read will
be through the associated Bus Controller channel. Defined for future implementation
or client use. Unused in reference design.

TxIoEn when set causes the IO associated with the channel to be configured for
transmission. In the case of the reference design with the bit set the directions are set
to cause transmission and the terminations disabled. The default configuration is
disabled.

RxIoEn when set causes the IO associated with the channel to be routed from the
Receiver. When cleared the data path into the Rx FIFO is from the GPB. Set for
standard IO operation, clear for Target writes to the Rx FIFO.

 Embedded Solutions Page 43 of 55

PcieSpartanVI_USER_CH_STATUS
[0x004 Status Register Port read/write]

Channel Status PORT

 DATA BIT DESCRIPTION
 31 IntStat
 30 LocInt
 29-12 spare
 11 UBFfIntLat
 10 BUFfIntLat
 9 spare
 8 spare
 7 UBFfFl
 6 UBFfAfl
 5 UBFfAMt
 4 UBFfMt
 3 BUFfFl;
 2 BUFfAFl
 1 BUFfAMt
 0 BUFfMt

Figure 30 PCIe-Spartan-VI Channel Status Register

IntStat when set indicates that LocInt is set and the Mask is also enabled i.e. an
interrupt is active for this channel.

LocInt is the combination of interrupts and single level masks before the channel level
mask. Set when at least one Interrupt request is present.

note:
UB = User => Bus Controller
BU = Bus Controller => User

UBFfIntLat is latched and held until cleared by write to the status port with this bit
position set. Almost Full User to Bus Controller FIFO.

UBFfIntLat is latched and held until cleared by write to the status port with this bit
position set. Almost Empty User to Bus Controller FIFO.

UBFfFl is set when the User to Bus Controller FIFO is Full.
UBFfAFl is set when the User to Bus Controller FIFO is Almost Full.
UBFfAMt is set when the User to Bus Controller FIFO is Almost Empty.
UBFfMt is set when the AX FIFO is Empty.

BUFfFl is set when the Bus Controller to User FIFO is Full.

 Embedded Solutions Page 44 of 55

BUFfAFl is set when the Bus Controller to User FIFO is Almost Full.
BUFfAMt is set when the Bus Controller to User FIFO is Almost Empty.
BUFfMt is set when the Bus Controller to User FIFO is Empty.

PcieSpartanVI_USER_CH_SP
[0x008 Status Register Port read/write]

Channel Spare Port

 DATA BIT DESCRIPTION
 31 - 0 Spare Register

Figure 31 PCIe-Spartan-VI Channel Spare Register

It is always nice to have a spare register to R/W with and make sure your SW is
operating properly. Each channel has one so you can do independence testing etc.
Store values or ignore in your operational implementation.

PcieSpartanVI_USER_BUS_FIFO_CNT
[0x00C Status Register Port read]

Channel UB FIFO Data Count

 DATA BIT DESCRIPTION
 31-0 Data positions currently used in UB FIFO

Figure 32 PCIe-Spartan-VI Channel UB FIFO Count

Bit positions 9-0 have the count. 31-10 are set to 0x00. The count is the 32 bit data
position count within the User to Bus Controller FIFO. Data is written as LW and read
out as bytes before being transferred to the Bus Controller on the corresponding data
lane. This count is used to compare against the programmed levels to determine
Almost Full etc.

 Embedded Solutions Page 45 of 55

PcieSpartanVI_BUS_USER_FIFO_CNT
[0x010 Status Register Port read]

Channel BU FIFO Data Count

 DATA BIT DESCRIPTION
 31-0 Data positions currently used in BU FIFO

Figure 33 PCIe-Spartan-VI Channel BU FIFO Count

Bit positions 9-0 have the count. 31-10 are set to 0x00. The count is the 32 bit data
position count within the XA FIFO. Data is written as bytes and read out as LW after
being transferred from the Xilinx on the corresponding data lane. This count is used to
compare against the programmed levels to determine Almost Empty etc.

The UB and BU FIFOs use flow control which is fixed in HW. Additional programmable
[user] level control is provided to support interrupts and other purposes. The data is
moved from one FPGA to the other by reading from the upstream port and writing to the
downstream port. Since the data transfer is pipelined, there are delays with the status
making it back to the controlling port. This is overcome by using burst mode transfers
when the transmitting side is not Almost Empty and the Receive side is not Almost Full.
When either side is Almost Empty /Full the transfer moves to a slower mode where the
status can be checked after each byte is moved to allow the last bytes to be transferred
without over-run or under-run issues.

PcieSpartanVI_USER_FIFO_WR
[0x014 UB FIFO Write Port]

Channel UB FIFO Write

 DATA BIT DESCRIPTION
 31-0 Data to write to UB FIFO

Figure 34 PCIe-Spartan-VI Channel UB FIFO Write

Writing to this port will put data into the UB FIFO. The data will transfer via the byte
lanes through the Bus Controller and into user memory [if DMA is set-up etc.]. The
reference software has a loop-back test where data is written to this port and DMA’d
back to user space. Useful for debugging initial DMA into system memory without
needing DMA out of system memory. Not normally used for system operation.

 Embedded Solutions Page 46 of 55

PcieSpartanVI_USER_FIFO_RD
[0x014 BU FIFO Read Port]

Channel BU FIFO Read

 DATA BIT DESCRIPTION
 31-0 Data read from BU FIFO

Figure 35 PCIe-Spartan-VI Channel BU FIFO Read

Reading from this port will retrieve data from the BU FIFO. The data from the Bus
Controller side will transfer via the byte lanes from user memory [if DMA is set-up etc.]
and into the User BU FIFO. The reference software incorporates a loop-back test
where data is DMA’d to the channel’s BU FIFO and read back with target accesses from
this port. Useful for debugging initial DMA from system memory without needing DMA
into system memory. Not normally used for system operation.

 Embedded Solutions Page 47 of 55

User FPGA Reference Design
The FPGA pin definitions are contained in the reference design. See the .UCF file for
the project.

The reference design is hierarchical. The top module defined the connection to the
UCF file and the underlying logic. Not strictly necessary – done for consistency with our
other designs which frequently have cores or other logic tied in at the top level.

UserAp is the base level of the User Design. The decoding for the registers, clock
generation [PLLs etc.] and ports are tied in at this level.

Each of the Ports is tied into the UserAp and provide independent controllers to provide
the loop-back function. The FIFO and Control bus interfaces are distributed to provide
a FIFO interface within each port. The idea is for the User design to replace the state-
machines in the reference design to implement whatever protocol is required.

The IO are evenly distributed in the reference design. The allocation can be updated by
the tie in at the UserAp level plus the logic within the ports. The number of ports can be
reduced or potentially expanded depending on how the FIFO lanes are operated.

 Embedded Solutions Page 48 of 55

Loop-Back
Loop-back can be accomplished with the use of an HDEterm100 and HDEcabl100.
The following cross connections are used to support the TTL and differential loop-back
tests supplied with the driver and UserAp software.

TTL signal “from” “to”
(11)100 (10)50
(9)44 (8)38
(7)82 (6)32
(5)74 (4)24
(3)68 (2)18
(1)12 (0)6

Each block of IO represents Channels in UserAp software (i.e. IO0-IO4 = Channel 0,
IO5-IO9 = Channel 1)
Differential “from” “to”
(IO0)1,51 (IO5)7,57
(IO1)2,52 (IO6)8,58
(IO2)3,53 (IO7)9,59
(IO3)4,54 (IO8)10,60
(IO4)5,55 (IO9)11,61

(IO10)13,63 (IO15)19,69
(IO11)14,64 (IO16)20,70
(IO12)15,65 (IO17)21,71
(IO13)16,66 (IO18)22,72
(IO14)17,67 (IO19)23,73

(IO20)27,77 (IO25)33,83
(IO21)28,78 (IO26)34,84
(IO22)29,79 (IO27)35,85
(IO23)30,80 (IO28)36,86
(IO24)31,81 (IO29)37,87

(IO30)39,89 (IO35)45,95
(IO31)40,90 (IO36)46,96
(IO32)41,91 (IO37)47,97
(IO33)42,92 (IO38)48,98
(IO34)43,93 (IO39)49,99

 Embedded Solutions Page 49 of 55

D100 Standard Pin Assignment
The pin assignment for the PCIe-Spartan-VI P1 connector.

 IO_0P IO_0M 1 51

IO_1P IO_1M 2 52
IO_2P IO_2M 3 53
IO_3P IO_3M 4 54
IO_4P IO_4M 5 55
TTL_0 GND* 6 56
IO_5P IO_5M 7 57
IO_6P IO_6M 8 58
IO_7P IO_7M 9 59
IO_8P IO_8M 10 60
IO_9P IO_9M 11 61
TTL_1 GND* 12 62
IO_10P IO_10M 15 63
IO_11P IO_11M 14 64
IO_12P IO_12M 15 65
IO_13P IO_13M 16 66
IO_14P IO_14M 17 67
TTL_2 TTL_8 18 68
IO_15P IO_15M 19 69
IO_16P IO_16M 20 70
IO_17P IO_17M 21 71
IO_18P IO_18M 22 72
IO_19P IO_19M 23 73
TTL_3 TTL_9 24 74
fused fused VCCB 25 75
fused fused VCCB 26 76
IO_20P IO_20M 27 77
IO_21P IO_21M 28 78
IO_22P IO_22M 29 79
IO_23P IO_23M 30 80
IO_24P IO_24M 31 81
TTL_4 TTL_10 32 82
IO_25P IO_25M 33 83
IO_26P IO_26M 34 84
IO_27P IO_27M 35 85
IO_28P IO_28M 36 86
IO_29P IO_29M 37 87
TTL_5 GND* 38 88
IO_30P IO_30M 39 89
IO_31P IO_31M 40 90
IO_32P IO_32M 41 91
IO_33P IO_33M 42 92
IO_34P IO_34M 43 93
TTL_6 GND* 44 94
IO_35P IO_35M 45 95
IO_36P IO_36M 46 96
IO_37P IO_37M 47 97
IO_38P IO_38M 48 98
IO_39P IO_39M 49 99
TTL_7 TTL_11 50 100

Figure 36 PCIe-Spartan-VI D100 Pinout

VCCB is shunt selectable – 3.3V or 5V. Fused with 1.1A resettable fuse.

 Embedded Solutions Page 50 of 55

Applications Guide

Interfacing
Some general interfacing guidelines are presented below. Do not hesitate to contact the
factory if you need more assistance.

ESD
Proper ESD handling procedures must be followed when handling PCIe-Spartan-VI.
The card is shipped in an anti-static, shielded bag. The card should remain in the bag
until ready for use. When installing the card, the installer must be properly grounded
and the hardware should be on an anti-static work-station.

Start-up
Make sure that the "system" can see your hardware before trying to access it. Many
BIOS will display the PCI devices found at boot up on a "splash screen" with the
VendorID and CardId and an interrupt level. Look quickly! If the information is not
available from the BIOS then a third party PCI device cataloging tool will be helpful. In
Windows systems the device manager can be used.

Watch the system grounds. All electrically connected equipment should have a fail-
safe common ground that is large enough to handle all current loads without affecting
noise immunity. Power supplies and power consuming loads should all have their own
ground wires back to a common point.

 Embedded Solutions Page 51 of 55

Construction and Reliability
PCIe Modules while commercial in nature can be conceived and engineered for rugged
industrial environments. PCIe-Spartan-VI is constructed out of 0.062 inch thick High
Temp FR4 material.

Surface mount components are used. Most devices are high pin count compared to
mass of the device. For high vibration environments inductors and other higher mass
per joint components can be glued down.

Conformal Coating is an option. For condensing environments conformal coating is
required.

ROHS processing is an option. Standard lead solder is used unless “-ROHS” is added
to the part number.

The D100 connector has Phosphor Bronze pins with Nickel plating for durability and
Gold plating on the contact area on both plugs and receptacles. The connectors are
keyed and shrouded. The pins are rated at 1 Amp per pin, 500 insertion cycles
minimum [at a rate of 800 per hour maximum]. These connectors make consistent,
correct insertion easy and reliable.

Thermal Considerations
PCIe-Spartan-VI is designed with CMOS circuits. The power dissipation due to internal
circuitry is very low. With the one-degree differential temperature to the solder side of
the board external cooling is easily accomplished.

 Embedded Solutions Page 52 of 55

Warranty and Repair
Please refer to the warranty page on our website for the current warranty offered and
options.

https://www.dyneng.com/warranty.html

Service Policy
Before returning a product for repair, verify as well as possible that the suspected unit is
at fault. Then call the Customer Service Department for a RETURN MATERIAL
AUTHORIZATION (RMA) number. Carefully package the unit, in the original shipping
carton if this is available, and ship prepaid and insured with the RMA number clearly
written on the outside of the package. Include a return address and the telephone
number of a technical contact. For out-of-warranty repairs, a purchase order for repair
charges must accompany the return. Dynamic Engineering will not be responsible for
damages due to improper packaging of returned items. For service on Dynamic
Engineering Products not purchased directly from Dynamic Engineering contact your
reseller. Products returned to Dynamic Engineering for repair by other than the original
customer will be treated as out-of-warranty.

Out of Warranty Repairs
Out of warranty repairs will be billed on a material and labor basis. Customer approval
will be obtained before repairing any item if the repair charges will exceed one half of
the quantity one list price for that unit. Return transportation and insurance will be billed
as part of the repair and is in addition to the minimum charge.

For Service Contact:
Customer Service Department
Dynamic Engineering
150 DuBois, Suite B/C
Santa Cruz, CA 95060
(831) 457-8891

support@dyneng.com

 Embedded Solutions Page 53 of 55

Specifications
PCIe Interfaces: PCIe 4 lane interface

Access types: Configuration and Memory space utilized

CLK rates supported: 133.33 MHz oscillator on User FPGA, 8 PLLs to provide programmable

frequencies(24). 50 MHz GPB clock, internal DCMs.

Memory FIFO memory is provided to support DMA both within the Controller and User
FPGAs. Flow control is also implemented between the devices. 16 data lanes
coupled to make 8 bidirectional full duplex channels.

IO 40 RS-485 or LVDS transceivers with programmable direction and termination -
Twelve TTL with programmable direction

Interface: D100 connector. [AMP] 787082-9 is the board side part number

Software Interface: Control Registers within Controller and User FPGAs. VHDL reference design for
User. Drivers provide generic calls for GPB access to allow any user
modification to be programmed with the standard driver.

Initialization: Programming procedure documented in this manual

Access Modes: Registers on longword boundary. Standard target access read and write to
registers and memory. DMA access to memory.

Access Time: no wait states in DMA modes. 1-2 wait states in target access to Xilinx. Altera
accesses are user defined.

Interrupt: 1 interrupt is supported with multiple sources. The interrupts are maskable and
are supported with a status register.

Onboard Options: Shunt for 3.3V or 5V reference to TTL IO. Header position for direct
programming of User FPGA or attached QSPI FLASH.

Dimensions: half-length PCIe board.

Construction: High Temp FR4 Multi-Layer Printed Circuit, Surface Mount Components.

Power: 12V, 3.3V from PCIe bus. Local 5V and 2.5V, 1.8V, and 1.2V created
with on-board power supplies.

User 8 position software readable switch
4 software controllable LEDs
Power Supply LEDs

 Embedded Solutions Page 54 of 55

Order Information
Standard temperature range -40-85øC components
PCIe-Spartan-VI https://www.dyneng.com/PCIe-Spartan-VI.html

half length PCIe card with user re-configurable Spartan VI
[XC6S100LX-3FG676I is base device], 40 differential IO, 12 TTL
IO, 8 PLL [24 clocks]

PCIe-Spartan-VI-ENG Engineering Kit for the PCI-Spartan-VI is ala-carte

Software, Cable,HDEterm100, reference User implementation.
Please refer to the webpage for more information. Driver /
reference SW: Win10/11, Linux.

-LVDS Switch to LVDS IO instead of RS485(default selection).

-ROHS Change to ROHS processing. Otherwise, leaded solder is used.

-CC Add Conformal Coating for condensing environments

-Mixed “Mixed” will be replaced with a new identifier. Combination of
LVDS and RS485 IO installed.

HDEterm100 https://www.dyneng.com/HDEterm100.html
100-pin connectors (2) matching the PCIeAlteraCycloneIV-
485/LVDS D100 interconnected with 100 screw terminals. DIN
rail mounting. Optional terminations and test points.

HDEcable100 https://www.dyneng.com/HDEcabl100.html
100 pin connector matching PCIe-Spartan-VI and HDEterm100.
Length options

All information provided is Copyright Dynamic Engineering

 Embedded Solutions Page 55 of 55

Appendix

General Purpose Bus Timing

The basic timing for the GPB relative to the User device is shown. The CNTL clock
operates at 50 MHz. Signals originating from the Bus Controller are registered to
provide set-up and hold. Skew is kept to a minimum with edge FF’s and controlled
routing within the PCB.

A host read of the User over the GPB starts with the address and Read Enable being
asserted. The User logic decodes the address and CNTL_REN to generate the local
READx signal. The reference design provides 180 of the READ decodes. Read data
is presented back to the CNTL_DATA bus and captured coincident with the edge of
CNTL_REN as shown.

A host write to the User over the GPB starts with the address and data being asserted.
After a 1 period delay CNTL_WEN is asserted. The User logic decodes the Address
and CNTL_WEN to create the LOADx signals. LOADx when used as a write enable
allows the CNTL_DATA to be loaded into the target device.

The included reference design [VHDL] provides the decoding and sample registers.

Further documentation is provided in-line with the VHDL.

CNTL_CLK

READ ADDRESS WRITE ADDRESS

CNTL_REN

READx

READ DATA WRITE DATA

CNTL_WEN

LOADx

Data Latched In Xilinx

CNTL_DATA

