DYNAMIC ENGINEERING

150 Dubois St. Suite C, Santa Cruz, CA 95060 831-457-8891 **Fax** 831-457-4793 http://www.dyneng.com sales@dyneng.com Est. 1988

User Manual

PCIe8LXMCX2CB

PCIe 8 Lane 2 Position XMC Compatible Carrier Connector Bus Version

Shown With JN4 full CB, 4 fans installed, AP power connector

Revision A2 9/6/17 Corresponding Hardware: Revision A Fab number 10-2017-0501

PCIe8LXMCX2CB

PCIe and XMC Compatible Carrier

Dynamic Engineering 150 Dubois St. Suite C Santa Cruz, CA 95060 831457-8891 831457-4793 FAX

©2012-2017 by Dynamic Engineering. Other trademarks and registered trademarks are owned by their respective manufactures. This document contains information of proprietary interest to Dynamic Engineering. It has been supplied in confidence and the recipient, by accepting this material, agrees that the subject matter will not be copied or reproduced, in whole or in part, nor its contents revealed in any manner or to any person except to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to ensure that this manual is accurate and complete. Still, the company reserves the right to make improvements or changes in the product described in this document at any time and without notice. Furthermore, Dynamic Engineering assumes no liability arising out of the application or use of the device described herein.

The electronic equipment described herein generates, uses, and can radiate radio frequency energy. Operation of this equipment in a residential area is likely to cause radio interference, in which case the user, at his own expense, will be required to take whatever measures may be required to correct the interference.

Dynamic Engineering's products are not authorized for use as critical components in life support devices or systems without the express written approval of the president of Dynamic Engineering.

Connection of incompatible hardware is likely to cause serious damage.

Table of Contents

PRODUCT DESCRIPTION	4
Headers and TestPoints	6
DipSwitch Settings	7
Options	8
XMC Module Backplane IO Interface Pin Assignment	10
XMC Module IO Resistor Selection	11
XMC Module Connector Resistor Selection	13
APPLICATIONS GUIDE	15
Interfacing	15
Construction and Reliability	16
Thermal Considerations	16
WARRANTY AND REPAIR	17
Service Policy Out of Warranty Repairs	17 17
For Service Contact:	17
SPECIFICATIONS	18
ORDER INFORMATION	19

List of Figures

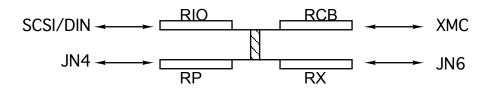
FIGURE 1	PCIE8LXMCX2CB JN4/JN6 INTERFACE STANDARD	10
FIGURE 2	PCIE8LXMCX2CB RESISTOR SELECTION IO	12
FIGURE 3	PCIE8LXMCX2CB RESISTOR SELECTION CONNECTOR	14

Product Description

PCIe8LXMCX2CB is part of the Dynamic Engineering PCIe and XMC Compatible family of modular I/O components. PCIe8LXMCX2CB adapts 2 XMC's to one PCIe slot.

Embedded applications frequently require real time processing coupled with special purpose IO. With PCIe8LXMCX2CB's two XMC positions; a PrXMC can be matched with another XMC to make a high bandwidth processing node. The PrXMC can communicate with the host for set-up, and then use the local bus to control and transfer data with the special purpose IO card.

The CB model has a Connector Bus between the two XMC rear IO connectors. 0 ohm resistors are used to select which lines are cross-connected and which go to the standard IO options. The resistors are located front and back with almost "0" stub length for the unused feature. The connections are impedance controlled and matched length routed as differential pairs. 100 ohms.


A selection table is provided to help with resistor stuffing selection. Both of the corresponding CB resistors will need to be installed to make the CB connection. For example IO0_0P can be connected to IO1_0P by selection of both CB resistors for that line. The standard IO connections will normally not be selected in this case, and can be if it makes sense for your system.

Since there are 64 rear IO lines per XMC and each need 4 resistors; a total of 512 resistors are available. Too many to have a standardized table of options. Contact Dynamic Engineering with your requirement. We will create a new -# to cover your configuration. A small charge is required to cover the cost of an updated programming file for the PnP and test program.

1st select which connector is tied to the IO. This can be on a signal by signal basis. Either, neither, both. 2nd select which IO to connect the selected connections. See

figures 2 & 3 at the rear of this manual.

Install the RP/RX resistors to tie the XMC signal to the selection point – to distribute to the SCSI or DIN connector and or other XMC position. Use RCB and/or RIO to select the IO side of the connection. This "I" form made of 4 0402 resistors allows for selection with almost no signal stub. Selectable on a signal by signal basis.

Special features:

- 24 Iane Gen1/2 compliant Switch
- 8 lanes allocated to PCIe "gold finger" interface. 8 lanes each to the XMC's
- Switch can store and forward locally to communicate directly between the XMC's
- Voltage monitors, each with LED's on plus 12V, minus 12V, plus 5V, plus 3.3V, and switch power [1.0V]
- 10A regulator for XMC 3.3V and 5V supplies. Shunts for Delayed, not Delayed, Off
- Selection switch for VPWR [12V or 5V] per XMC. Option for hardwired 5V or 12V
- Front panel connector access through PCI bracket
- User IO [Jn4 and/or Jn6] available through one of two cable connectors (DIN IDC or SCSI II compatible) Spare pins on SCSI connector can be shunt selected to power or ground.
- Connector Bus available to cross connect XMC rear IO between modules
- · Cooling cutout for increased airflow to XMC's
- Optional Fan(s) for increased airflow
- JTAG programming support
- DIP switch to select global addressing on XMC's

The PCIe8LXMCX2CB is ready to use with the default settings. Just install the XMC(s) onto PCIe8LXMCX2CB and then into the system.

Headers and TestPoints

J6 and J11 are used to select the VPWR source for position 0 and 1 respectively. When the Shunt closes 1-2 - 12V is selected. With 2-3 closed 5V is selected. FET's are used to provide a low impedance path from the power supplies to VPWR for each position. Options are in place on the PCB to allow hardwired selections for clients who prefer a fixed voltage. The headers are not installed when the fixed voltage option is in place. With pin 2 open VPWR will be open.

J12, 13, and 23 are used to select the bezel grounding option. 1-2 selects AC coupled, 2-3 selects DC coupled and open is open. J12 = PCIe Bezel. J13 = Slot 0. J23 = Slot 1.

J1 is an optional header for SMB connection. Pin 1 is data and pin 2 is clock. Both are pulled up. 3rd party tools can be used to see the "innards" of the switch. Usually not needed but handy if you are doing development or want to talk through the switch to the XMC positions.

TP1 is an optional JTAG header used to connect to XMC 0. The pin definitions are in the silk. 1: 3.3V, 2: GND, 3: TMS, 4: TDO, 5: TDI, 6: TCK, 7: TRST

J2 & J19 control the voltage on 33,67 of P2 and P7 respectively when the SCSI connector options are selected. 1-2 selects 3.3V and 2-3 selects ground on those pins. The shunt and traces are rated for 1A. Not fuse protected.

J3 & J20 control the voltage on 34,68 of P2 and P7 respectively when the SCSI connector options are selected. 1-2 selects 3.3V and 2-3 selects ground on those pins. The shunt and traces are rated for 1A. Not fuse protected.

P3, 4, 6 are optional power connectors to allow for added 12V power to be used by the PCIe8LXMCX2. The PCIe gold fingers allow for about 60W of power to be consumed by the board across all XMC voltages including power supply losses. In many cases the power budget is more than sufficient. If your XMC's require more power please request one of the optional power connectors [discrete wire, 4 wire standard PC vert or horizontal] to increase the 12V available. Both 12V entry points are diode coupled to prevent the current back-feeding when an external or other supply is added.

P3: 1-2 = gnd, 3-4 = 12V. P4,6: 1= 12V, 2-3 = gnd.

J4, J5 control the power sequencing for 3.3V and 5V respectively. 1-2 selects a delayed start-up of the power supply, 2-3 for immediate start-up [based on 12V available] and open is off [used for power savings when a supply is not required. Added with Rev 03 boards. Resistor options are available to hardwire the selection.

DipSwitch Settings

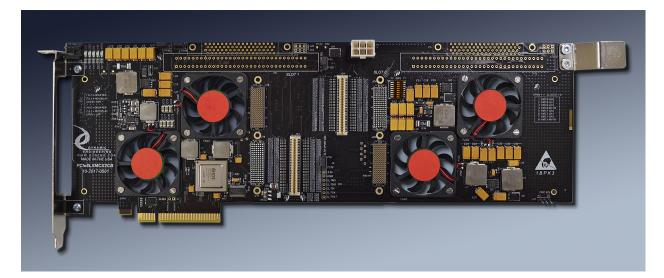
Switch 1: Global Address Settings

Position 1-3 corresponds to XMC0 GA0-2. When closed the signal is '0'. When open the signal is '1'.

Position 4 corresponds to XMC0-MVR0. When closed the signal is '0'. When open the signal is '1'.

Position 5-7 corresponds to XMC1 GA0-2. When closed the signal is '0'. When open the signal is '1'.

Position 8 corresponds to XMC1-MVR0. When closed the signal is '0'. When open the signal is '1'.


Options

Dynamic Engineering offers multiple versions of the PCIe8LXMCX2CB design.

PCIe8LXMCX2CB features cooling cutouts designed to support the addition of a fan in one or two positions for each XMC. On PrXMC's and other XMC's with high thermal loads the fan option is a good idea. On cards with a lower thermal profile the fan is not needed. The fan produces 5 CFM in a small area to create a high LFM rating suitable for most cooling requirements. The fan used has a relatively low noise rating for quiet operation. Position 1 is closest to the PCI bezel and position 2 is closer to the XMC connectors. For position 3 and position 4 locations continue counting left to right.

In addition PCIe8LXMCX2CB has options for Jn4/Jn6 signal routing. VME style 2x32 pin header or a SCSI style connector for IO and the CB bus for interconnecting the two XMC positions.

Please mix and match options, as you need them.

The DIN connectors are oriented as shown by the pads under the SCSI connectors in the picture and the diagram. Pin A1 is the lower left corner pin. Pin C1 corresponds to the cable wire number 1 for a standard header inserted into the connector on the PCIe8LXMCX2CB. The mating parts are available from a number of manufacturers.

Cables and breakouts are available from Dynamic Engineering – Please see DINterm64 and DINribn64 or HDEcabl68 and HDEterm68 products from the Dynamic Engineering website.

XMC Module Backplane IO Interface Pin Assignment

The figure below gives the pin assignments for the XMC Module IO Interface – from Jn4 and/or Jn6 to the PCIe8LXMCX2CB connectors. Also see the User Manual for your XMC board for more information. Please note that P2 or P13, P7 or P5 are installed not both.

DIN IDC	[P13.P5]	SCSI II	[P2,P7]	Sig/Sig		Jn4	Jne	5
A1	C1	1	35	0N/0P	3	1	B1	A1
A2	C2	2	36	1N/1P	4	2	E1	D1
A3	C3	3	37	2N/2P	7	5	C2	C1
A4	C4	4	38	3N/3P	8	6	F2	F1
A5	C5	5	39	4N/4P	11	9	B3	A3
A6	C6	6	40	5N/5P	12	10	E3	D3
A7	C7	7	41	6N/6P	15	13	C4	C3
A8	C8	8	42	7N/7P	16	14	F4	F3
A9	C9	9	43	8N/8P	19	17	B5	A5
A10	C10	10	44	9N/9P	20	18	E5	D5
A11	C11	11	45	10N/10P	23	21	C6	C5
A12	C12	12	46	11N/11P	24	22	F6	F5
A13	C13	13	47	12N/12P	27	25	B7	A7
A14	C14	14	48	13N/13P	28	26	E7	D7
A15	C15	15	49	14N/14P	31	29	C8	C7
A16	C16	16	50	15N/15P	32	30	F8	F7
A17	C17	17	51	16N/16P	35	33	B9	A9
A18	C18	18	52	17N/17P	36	34	E9	D9
A19	C19	19	53	18N/18P	39	37	C10	C9
A20	C20	20	54	19N/19P	40	38	F10	F9
A21	C21	21	55	20N/20P	43	41	B11	A11
A22	C22	22	56	21N/21P	44	42	E11	D11
A23	C23	23	57	22N/22P	47	45	C12	C11
A24	C24	24	58	23N/23P	48	46	F12	F11
A25	C25	25	59	24N/24P	51	49	B13	A13
A26	C26	26	60	25N/25P	52	50	E13	D13
A27	C27	27	61	26N/26P	55	53	B15	A15
A28	C28	28	62	27N/27P	56	54	E15	D15
A29	C29	29	63	28N/28P	59	57	B17	A17
A30	C30	30	64	29N/29P	60	58	E17	D17
A31	C31	31	65	30N/30P	63	61	B19	A19
A32	C32	32	66	31N/31P	64	62	E19	D19
		33		, +3 or GND via	J2,19 sil	k screen defined		
		34	68 Open	, +3 or GND via	J3,20			

FIGURE 1

Read table:

PCIE8LXMCX2CB JN4/JN6 INTERFACE STANDARD

P13-C1 = P2-35 = Pn4-1 P13-A1 = P2-1 = Pn4-3 etc.

With Jn6: Pins: A, B, D, E of rows 2, 4, 6, 8, 10, 12, 14, 16, 18 are grounded Effective connections with RIO column of resistors installed and both connector selectors.

XMC Module IO Resistor Selection

XMC0			XMC1		
Signal	R IO	R CB	R CB	R IO	Signal
100_0P	157	285	349	221	IO1 0P
100_0N	156	284	348	220	101_0N
100 ⁻ 1P	159	287	351	223	101 1P
100_1N	158	286	350	222	101_1N
100 ⁻ 2P	161	289	353	225	IO1_2P
100 ⁻ 2N	160	288	352	224	101 ⁻ 2N
100_3P	163	291	355	227	101_3P
1O0_3N	162	290	354	226	IO1_3N
IO0_4P	165	293	357	229	IO1_4P
IO0_4N	164	292	356	228	IO1_4N
IO0_5P	167	295	359	231	IO1_5P
IO0_5N	166	294	358	230	IO1_5N
IO0_6P	169	297	361	233	IO1_6P
IO0_6N	168	296	360	232	IO1_6N
IO0_7P	171	299	363	235	IO1_7P
100_7N	170	298	362	234	IO1_7N
IO0_8P	173	301	365	237	IO1_8P
1O0_8N	172	300	364	236	IO1_8N
IO0_9P	175	303	367	239	IO1_9P
100_9N	174	302	366	238	IO1_9N
IO0_10P	177	305	369	241	IO1_10P
IO0_10N	176	304	368	240	IO1_10N
IO0_11P	179	307	371	243	IO1_11P
100_11N	178	306	370	242	IO1_11N
IO0_12P	181	309	373	245	IO1_12P
IO0_12N	180	308	372	244	IO1_12N
100_13P	183	311	375	247	IO1_13P
IO0_13N	182	310	374	246	IO1_13N
100_14P	185	313	377	249	IO1_14P
100_14N	184	312	376	248	IO1_14N
100_15P	187	315	379	251	IO1_15P
100_15N	186	314	378	250	IO1_15N
100_16P	189	317	381	253	IO1_16P
IO0_16N	188	316	380	252	IO1_16N
100_17P	191	319	383	255	IO1_17P
IO0_17N IO0_18P	190 193	318 321	382 385	254 257	IO1_17N IO1_18P
100_18P 100_18N	193	321	385 384	257	IO1_18P IO1_18N
100_18N 100_19P	192	320	387	250	IO1_18N
100_19P 100_19N	195	323	386	259	IO1_19P IO1_19N
	104	522	000	200	

IO0 20P	197	325	389	261	IO1 20P
100_20N	196	324	388	260	IO1_20N
100_201N	199	327	391	263	IO1_21P
IO0_211 IO0_21N	198	326	390	262	IO1_21N
IO0_21N IO0_22P	201	329	393	265	IO1_21N
	201	328	393	264	—
100_22N					IO1_22N
100_23P	203	331	395	267	IO1_23P
IO0_23N	202	330	394	266	IO1_23N
IO0_24P	205	333	397	269	IO1_24P
IO0_24N	204	332	396	268	IO1_24N
IO0_25P	207	335	399	271	IO1_25P
IO0_25N	206	334	398	270	IO1_25N
100_26P	209	337	401	273	IO1_26P
100_26N	208	336	400	272	IO1_26N
100_27P	211	339	403	275	IO1_27P
IO0_27N	210	338	402	274	IO1_27N
100_28P	213	341	405	277	IO1_28P
100_28N	212	340	404	276	IO1_28N
100_29P	215	343	407	279	IO1_29P
100_29N	214	342	406	278	IO1_29N
100_30P	217	345	409	281	IO1_30P
100_30N	216	344	408	280	IO1_30N
IO0_31P	219	347	411	283	IO1_31P
100 ⁻ 31N	218	346	410	282	IO1_31N
FIGURE 2					B RESISTOR SELECTION IO

IO0 refers to XMC 0 and IO1 refers to XMC1. Resistors are numbered with the "R" implied (not shown in table). The first and fourth resistor columns are for the standard IO – SCSI or DIN connector for IO0/IO1. The second and third resistor columns are for the Connector Bus between XMC0 and XMC1. Both need to be installed to make a connection on any particular signal.

Convert from signal name to connector pin number with Figure 1. The previous table is for both XMC positions. Prepend with IO0_ or IO1_ to get the signal name in this table.

The next table is to select which connector Jn4 or Jn6 is tied to each IO defined in the table able.

XMC0			XMC1		
Signal	RΡ	RX	RP	RX	Signal
100_0P	413	476	541	604	IO1_0P
100_0N	412	477	540	605	IO1_0N
100 1P	415	478	543	606	101 1P
100 1N	414	479	542	607	101 ¹ N
100_2P	417	480	545	608	101 ² P
100 ² N	416	481	544	609	101 ² N
100_3P	419	482	547	610	IO1_3P
100_3N	418	483	546	611	IO1_3N
100_4P	421	484	549	612	IO1_4P
IO0_4N	420	485	548	613	IO1_4N
IO0_5P	423	486	551	614	IO1_5P
IO0_5N	422	487	550	615	IO1_5N
IO0_6P	425	488	553	616	IO1_6P
IO0_6N	424	489	552	617	IO1_6N
IO0_7P	427	490	555	618	IO1_7P
100_7N	426	491	554	619	IO1_7N
IO0_8P	429	492	557	620	IO1_8P
100_8N	428	493	556	621	IO1_8N
100_9P	431	494	559	622	IO1_9P
100_9N	430	495	558	623	IO1_9N
IO0_10P	433	496	561	624	IO1_10P
100_10N	432	497	560	625	IO1_10N
IO0_11P	435	498	563	626	IO1_11P
100_11N	434	499	562	627	IO1_11N
100_12P	437	500	565	628	IO1_12P
100_12N	436	501	564	629	IO1_12N
100_13P	439	502	567	630	IO1_13P
100_13N	438	503	566	631	IO1_13N
100_14P	441	504	569	632	IO1_14P
100_14N	440	505	568	633	IO1_14N
IO0_15P	443	506	571	634	IO1_15P
IO0_15N	442	507	570	635	IO1_15N
100_16P	445	508	573 572	636	IO1_16P
100_16N	444	509	572 575	637	IO1_16N
100_17P	447	510	575	638	IO1_17P
IO0_17N IO0_18P	446	511 512	574 577	639 640	IO1_17N
IO0_18P IO0_18N	449 448	512 513	577 576	640 641	IO1_18P
	448 451	513 514	576 570	641 642	IO1_18N IO1_19P
IO0_19P	451	514	579	642	101_19P

XMC Module Connector Resistor Selection

				0.40	
IO0_19N	450	515	578	643	IO1_19N
IO0_20P	453	516	581	644	IO1_20P
IO0_20N	452	517	580	645	IO1_20N
IO0_21P	455	518	583	646	IO1_21P
100_21N	454	519	582	647	IO1_21N
100_22P	457	520	585	648	IO1_22P
100_22N	456	521	584	649	IO1_22N
100_23P	459	522	587	650	IO1_23P
100_23N	458	523	586	651	IO1_23N
IO0_24P	461	524	589	652	IO1_24P
IO0_24N	460	525	588	653	IO1_24N
IO0_25P	463	526	591	654	IO1_25P
IO0_25N	462	527	590	655	IO1_25N
IO0_26P	465	528	593	656	IO1_26P
IO0_26N	464	529	592	657	IO1_26N
IO0_27P	467	530	595	658	IO1_27P
100_27N	466	531	594	659	IO1_27N
100_28P	469	532	597	660	IO1_28P
100_28N	468	533	596	661	IO1_28N
100_29P	471	534	599	662	IO1_29P
100_29N	470	535	598	663	IO1_29N
100_30P	473	536	601	664	IO1_30P
100_30N	472	537	600	665	IO1_30N
100 ⁻ 31P	475	538	603	666	101 ⁻ 31P
100_31N	474	539	602	667	101 ⁻ 31N
_					—

FIGURE 3

PCIE8LXMCX2CB RESISTOR SELECTION CONNECTOR

IO0 refers to XMC 0 and IO1 refers to XMC1. Resistors are numbered with the "R" implied (not shown in table). With the RP [Jn4] and/or RX[Jn6] resistors installed the respective connectors are tied into the IO selection matrix.

Example(1) installing R474 and R475 will tie the J04 IO0_31 differential pair to the IO Selection point. Adding R219 and R218 will connect through to the IO connector [SCSI or DIN].

Example(2) installing R538 and R539 will tie the J06 IO0_31 differential pair to the IO Selection point. Adding R346 and R347 will connect through to the CB bus. The corresponding R's will need to be installed to tie to J14 or J16.

Applications Guide

Interfacing

Some general interfacing guidelines are presented below. Do not hesitate to contact the factory if you need more assistance.

Installation

The XMC is mounted to the PCIe8LXMCX2CB prior to installation within the chassis. For best results: with the PCIe bracket installed, install the XMC at an angle so that the XMC front panel bezel penetrates the PCIe bracket then rotate down to mate with the XMC [JnX] connectors. The rear slot does not have the bezel interaction and can be mounted directly.

There are four mounting locations per XMC. Two into the XMC mounting bezel, and two for the standoffs near the XMC bus connectors.

Start-up

Make sure that the "system" can see your hardware before trying to access it. Many BIOS will display the PCI devices found at boot up on a "splash screen" with the VendorID and CardId for the XMC installed and an interrupt level. If the information is not available from the BIOS then a third party PCI device cataloging tool will be helpful

Watch the system grounds. All electrically connected equipment should have a failsafe common ground that is large enough to handle all current loads without affecting noise immunity. Power supplies and power consuming loads should all have their own ground wires back to a common point.

Power all system power supplies from one switch. Connecting external voltage to the PCIe8LXMCX2CB when it is not powered can damage it, as well as the rest of the host system. This problem may be avoided by turning all power supplies on and off at the same time. This applies more to the XMC's installed onto the PCIe8LXMCX2CB than the PCIe8LXMCX2CB itself, and it is smart system design when it can be achieved.

Construction and Reliability

PCIe8LXMCX2CB is constructed out of 0.062 inch thick high temp RoHS compliant material. Cooling cutouts are designed into the product for improved air flow to the XMC sites. The components on the PCIe8LXMCX2CB are tied into the internal power planes to spread the dissipated heat out over a larger area. This is an effective cooling technique in the situation where a large portion of the board has little or no power dissipation.

A fan option is available for high thermal load XMC's or for a chassis with a lack of air circulation.

Surface mounted components are used. The connectors are SMT for the XMC bus and through hole for the IO.

The XMC Module connectors are keyed and shrouded with Gold plated pins on both plugs and receptacles. They are rated at 1 Amp per pin, 100 insertion cycles minimum. These connectors make consistent, correct insertion easy and reliable.

The XMC Module is secured against the carrier with the XMC connectors. It is recommended, for enhanced security against vibration, that the XMC mounting screws are installed. The screws are supplied with the XMC from the OEM. Dynamic Engineering has screws, standoffs, blank bezels and other XMC hardware available at a reasonable cost if your XMC was not shipped with some of the required attachment hardware or if it has been misplaced.

Thermal Considerations

If the installed XMC has a large heat dissipation; forced air cooling is recommended. The zero slot Fan option can provide plenty of cooling power should your XMC require it.

Warranty and Repair

Please refer to the warranty page on our website for the current warranty offered and options.

http://www.dyneng.com/warranty.html

Service Policy

Before returning a product for repair, verify as well as possible that the suspected unit is at fault. Then call the Customer Service Department for a RETURN MATERIAL AUTHORIZATION (RMA) number. Carefully package the unit, in the original shipping carton if this is available, and ship prepaid and insured with the RMA number clearly written on the outside of the package. Include a return address and the telephone number of a technical contact. For out-of-warranty repairs, a purchase order for repair charges must accompany the return. Dynamic Engineering will not be responsible for damages due to improper packaging of returned items. For service on Dynamic Engineering Products not purchased directly from Dynamic Engineering contact your reseller. Products returned to Dynamic Engineering for repair by other than the original customer will be treated as out-of-warranty.

Out of Warranty Repairs

Out of warranty repairs will be billed on a material and labor basis. Customer approval will be obtained before repairing any item if the repair charges will exceed one half of the quantity one list price for that unit. Return transportation and insurance will be billed as part of the repair and is in addition to the minimum charge.

For Service Contact:

Customer Service Department Dynamic Engineering 150 DuBois St. Suite C Santa Cruz, CA 95060 831-457-8891 831-457-4793 fax Internet Address support@dyneng.com

Specifications

Logic Interfaces:	PCIe up to 8 lanes per XMC Gen1 and Gen2 compliant switch and clock buffer.
Access types:	PCIe TLP transactions. MSI interrupts.
CLK rates supported:	Gen1 and Gen2
Software Interface:	switch is auto configured and usually will not require any user intervention.
Initialization:	switch selections for VPWR, bezel grounding, and cable options
Interface:	XMC front bezel via PCIe bracket and User IO connector via DIN or SCSI connector or cross connection of XMC rear IO connectors. Mix and match between External and Internal connections.
Dimensions:	full length PCIe board with offset PCI card guide support.
Construction:	High Temp FR4 Multi-Layer Printed Circuit, Through Hole and Surface Mount Components.

Order Information

standard temperature range -40<	⇒85 ^ø C
PCIe8LXMCX2CB	full length PCIe card with 2 XMC positions DIN connectors installed. User VPWR selection http://www.dyneng.com/PCIe8LXMCX2CB.html
-FAN(1,2,3,4)R	[fan installed in position 1 or 2 or 3 or 4 or combinations] "R" for rear mounted higher velocity fans(~8 CFM). Non "R" boards use "Zero Slot" fans with ~ 5CFM.
-CB assignment	Special Dash number assigned for custom configurations of cross connection bus and IO.
-ROHS	[ROHS compliant parts and process]
-XIO	Install Jn6 connectors as well as Jn4
-XIOExc	Install Jn6 connectors without Jn4
-SCSI	Install SCSI connectors instead of DIN
-NC	Do not install DIN or SCSI connectors
-VPWR	Use to hardwire VPWR setting to be 5V or 12V per XMC site [-5V0 for 5V in position 0]
-5VXXX, -3VXXX	XXX = ND [no delay], DEL[delay], OFF [power supply disabled] for hardwired options instead of user selectable
-AP	Options to add 2x3 standard PC power connector for additional 12V supply capability beyond PCIe gold finger capability.
HDEterm68	http://www.dyneng.com/HDEterm68.html 68 pin SCSI II to 68 screw terminal converter with DIN rail mounting.

HDEcabl68	http://www.dyneng.com/HDEcabl68.html SCSI cables with latch blocks or thumbscrews and various lengths are available. Custom lengths can be ordered.
DINterm64	http://www.dyneng.com/DINterm64.html 64 pin ribbon cable to to 64 screw terminal converter with DIN rail mounting.
DINribn64	http://www.dyneng.com/DINribn64.html 64 pin ribbon cable with strain relief. 50-2012-0101- XX.YY.ZZ Substitute XX = major, YY = minor, ZZ = units . For example 1.0.FT = 1 Ft long. 1.6Ft is 1 Foot 6". Metric and English units are acceptable. 36" is the default length if XX.YY.ZZ is left off.

All information provided is Copyright Dynamic Engineering

