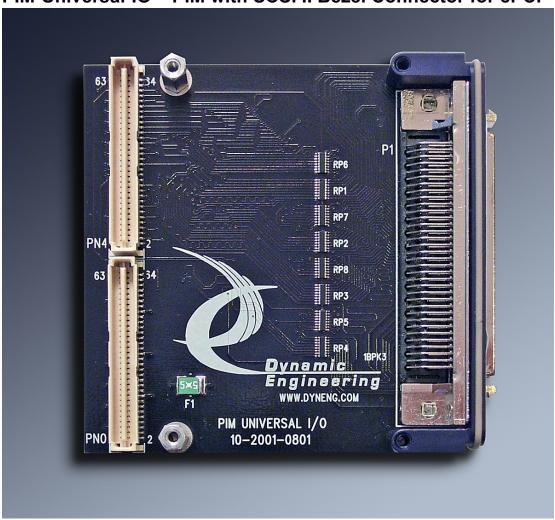


User Manual

PIM-Universal-IO

PMC I/O Module


Manual Revision 02p1
Revision Date 8/24/2020
Corresponding Hardware 10-2001-08(01-05)
Current Fab Number 10-2001-0805

Dynamic Engineering 150 DuBois St. Suite C Santa Cruz, CA 95060 (831) 457-8891

www.dyneng.com sales@dyneng.com

Est. 1988

PIM-Universal-IO - PIM with SCSI II Bezel Connector for cPCI

Copyright© 2001-2020 Dynamic Engineering.

All rights reserved

All other trademarks are the property of their respective owners.

Cautions and Warnings

The electronic equipment described herein generates, uses, and can radiate radio frequency energy. Operation of this equipment in a residential area is likely to cause radio interference, in which case the user, at their own expense, will be required to take whatever measures may be required to correct the interference.

Dynamic Engineering's products are not authorized for use as critical components in life support devices or systems without express written approval from the president of Dynamic Engineering.

Connection of incompatible hardware is likely to cause serious damage.

Table of Contents

Design Revision History	1
Manual Revision History	1
Product Description	2
Key Product Features	4
Product Specifications	4
Construction and Reliability	4
Installation and Interfacing Guidelines	4
Installation	4
ESD	4
Guidelines	4
Grounds	4
Pin Assignments	5
PMC Module Front Panel I/O Interface Pin Assignment	5
PIM Module Pn4 I/O Interface Pin Assignment	6
System Diagram	7
Warranty and Repair	8
Service Policy	
Out-of-Warranty Repairs	8
Contact	
Ordering Information	9
Glossary	10
Figures	
Figure 1: PIM-Universal-IO Schematic	
Figure 2: PIM-Universal-IO System Diagram	
Figure 3: Ordering Options PIM-Universal-IO	9
Tables	
Table 1: Design Revision History	
Table 2: Manual Revision History	
Table 3: Key Product Features	
Table 4: Product Specifications	
Table 5: PMC Module Front Panel I/O Interface Pin Assignment	
Table 6: PIM Module Pn4 I/O Interface Pin Assignment	
Table 7: Ordering Information	9

Design Revision History

Table 1: Design Revision History

Revision	Date	Description		
Α	5/8/2001	Initial release of design		
В	8/15/2006	Updated to RoHS; also updated FUSE and updated to 4-position RPACKs		
С	2/14/2007	Shrank board outline No Schematic changes		
D	3/15/2012	Update to rail compatible no schematic changes		
05	08/20/2020	Update to 0402 no RPs Capture into Altium		

Manual Revision History

Table 2: Manual Revision History

Date	Description			
NOTE: Revisions released prior to August 2020 may have incomplete data				
10/30/2001	Initial release of manual			
8/24/2020	Updated formatting to improve usability			
	Date isions release 10/30/2001			

NOTE: Dynamic Engineering has made every effort to ensure that this manual is accurate and complete; that being said, the company reserves the right to make improvements or changes to the product described in this document at any time and without notice. Furthermore, Dynamic Engineering assumes no liability arising out of the application or use of the device described herein.

Product Description

PIM-Universal-IO is part of the PMC module family of modular I/O components. The purpose of the PIM-Universal-IO is to facilitate rear panel I/O in cPCI systems.

The Pn4 user I/O on the PMC is routed through the host carrier board to the backplane. A PIM carrier is mounted to the underside of the backplane. The Pn4 I/O is passed through the backplane connectors to the PIM carrier and to the installed PIM devices. When installed, the PIM-Universal-IO will recreate the PMCs Pn4 I/O in the rear compartment of the chassis (under the backplane). All of the 64 I/O connections are routed to the 68-pin SCSI II connector. The signals are routed through 0 Ohm resistors. Alternate values can be implemented if desired to provide signal damping. Pins 1-64 correspond to pins 1-64 of the Pn4 connector on the PMC. The extra pins are assigned to GND and +5V. The +5V power is fused through a 500 mA resettable fuse.

The PIM specification provides for power and ground references. Internal power and ground planes are used to reference the signals routed across the PIM.

The SCSI connector has a variety of mates available to allow ribbon, discrete, pre-made, and customer-made cabling solutions. Please contact Dynamic Engineering for custom cables or a custom version of the PIM.

Figure 1: PIM-Universal-IO Schematic

	0Ω, 0402, 1/16W		P1	1		0Ω, 0402, 1/16W			
01	R1 1 2 L0	1 1_01	1,	35 35	L_035	L_035 R35 1 _ 2	1035/	Pn4	
102	R2 1 1 2 L0	2 1_02	2 2	36	L_036	L_036 R36 1 _ 2	1036	1063 63 64 64	
103	R3 1 A 2 LC		3 2	27	L037	L037 R37 1 4 _2	1037	1061 61 62 62	
04	R4 1 1 2 LC	4 1_04	4	37 38	L_038	L038 R38 1 _ 2	1038	1059 59 59 60 60	
05	R5 1 2 L0		5 5	38 39	L_039	L039 R39 1 2	1039	1057 57 58 58	
06	R6 1 1 2 L0		6 6	39 40	L040	L040 R40 1 2	1040	1055 55 56 56	
07	R7 1 1 2 L0		7 -	40 41	L_041	L041 R41 1 2	1041	1053 53 54 54	
08	R8 1 \ 2 L0		8 -	41 42	L042	L042 R42 1 _ 2	1042/	1051 51 52 52	
)9	•	9 1_09	9 -	42 43	L_043	L043 R43 1 2	1043	1049 49 50 50	
010	R10 1 1 2 L01		9	43 44	L044	L044 R44 1 1 2	1044	1047 47 48 48	
011	R11 1 2 L01		11	44 45	L045	L045 R45 1 2	1045	1045 45 46 46	
012	R12 1 2 L01		12	45 46	L046	L046 R46 1 2	1046	1043 43 44 44	
013	R13 1 2 L01		12	46 47	L047	L047 R47 1 2	1046/	1041 41 41 42 42	
014	R14 1 2 L01		14	47	L048	L048 R48 1 2	1047	1039 39 39 40	
	V		14	48		•		1027 27 27	
015	R15 1 2 L01		15 15	49 49	L_049	L049 R49 1 2	1049	1035	
016	R16 1 2 L01		16	50 50		1 050 R50 1 2	1050	35 36	
017	R17 1 2 L01		17	51 51		LO51 R51 1 2	1051/	1021 21 22	
018	R18 1 2 L01		18 18	52 52		1_052 R52 1 \ 2	1052/	1020 20 20	
019	R19 1 ~ 2 L01		19	53		1_053 R53 1 \ 2	1053/	29 30	
020	R20 1 2 L02		20 20	54 54	L054/	L054 R54 1 \ 2	1054/	1035	
021	R21 1 2 L02		21 21	55 55	L_055	LOSS RSS 1 ~ 2	1055/	1022 22	
022	R22 1 \ 2 L02		22 22	56 56	L_056	LOS6 RS6 1 2	1056/	1021 21 22	
023	R23 1 \(\frac{2}{2} \Lo2		23 23	57		LO57 R57 1 \ 2	1057	1010 10 20	
024	R24 1 \(\frac{2}{2} \Lo2	4 L_024	24 24	58 58	<u>L058</u>	LO58 R58 1 2	1058/	1019 19 19 20 20	
025	R25 1 2 L02		25 25	59 <mark>59</mark>	L_059	LO59 R59 1 2	1059/	1017 17 18 18	
026	R26 1 2 L02		26	60	L_060	L060 R60 1 \ 2	1060/	1015 15 16 16	
027	R27 1 2 L02	7/1_027	27 27	61	L_061	L061 R61 1 2	1061/	1013 13 14 14	
028	R28 1 2 L_02	B L_028	28 28	62	I_062	1_062 R62 1 2	1062/	1011 11 12 12	
029	R29 1 2 L02	9/1_029	29 29	63	L_063	L063 R63 1 2	1063/	9 10 10	
030	R30 1 2 L03	0 1_030	30	64	L_064	L064 R64 1 2	1064/	7 8 8	
031	R31 1 2 LOS	1 1_031	31 31	65 <mark>65</mark>				105 5 6 6	
032	R32 1 2 L03	2 1_032	32 32	66				NO3 3 4 4	
033	R33 1 ~ 2 L_03	3 1_033	33 _{33 M}	M 67 67	٦			1 2 2	
034	R34 1 2 L03	4 L_034	34 34 H	H 1 68 68				71436 71436-2164	
	+5V		및 E	1				30-2104	
	T	F2		T ANG TH	<u></u>				

Key Product Features

Table 3: Key Product Features

Feature	Description
Rear Panel Applications	Use PIM to route PMC/XMC signals for rear panel applications
Controlled I/O	Matched-length impedance controlled I/O
SCSI	SCSI connector at rear bezel. SCSI cables and DIN Rail
	breakouts available

Product Specifications

Table 4: Product Specifications

Specification	Description		
Carrier Connector	PMC Pn4 Connector		
Bezel Connector	SCSI II connector with latch-blocks (standard)		
I/O	64 I/O-routed plus fused power and ground connections. 0Ω series resistors in signal path between Pn4 and Pn1. Other resistor values available.		

Construction and Reliability

PIMs are conceived and engineered for rugged industrial environments. The PIM-Universal-IO is constructed out of 0.062-inch thick, high-temp FR4 material.

Through-hole and surface mounting of components are used. High insertion and removal forces are required, which assists in the retention of components. The stand-offs should be used to mount the PIM to the PIM carrier to provide added protection against vibration induced intermittent connections.

The PMC Module connectors are keyed and shrouded with Gold-Plated pins on both plugs and receptacles. They are rated at 0.5 Amp per pin, 200 insertion cycles minimum. These connectors make consistent, correct insertion easy and reliable.

The PIM-Universal-IO is entirely passive.

Installation and Interfacing Guidelines

Some general interfacing guidelines are presented below. If you need more assistance, contact Dynamic Engineering.

Installation

Warning: Connection of incompatible hardware is likely to cause serious damage.

ESD

Safety and reliability can be achieved only by careful planning and practice. Inputs can be damaged by static discharge by applying voltage less than ground or more than +5 volts with the IP powered. With the IP unpowered, driven input voltages should be kept within 0.7 volts of ground potential.

Guidelines

Grounds - Watch the system grounds. All electrically connected equipment should have a fail-safe common ground that is large enough to handle all current loads without affecting noise immunity.

Power supplies and power consuming loads should have all their own ground wires back to a common point.

Pin Assignments

PMC Module Front Panel I/O Interface Pin Assignment

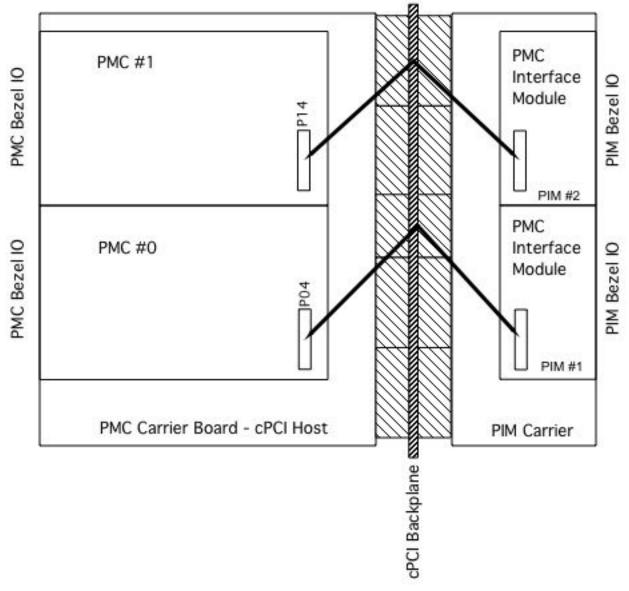
The table below gives the pin assignments for the PIN Module I/O interface.

Table 5: PMC Module Front Panel I/O Interface Pin Assignment

Signal	Names	SCSI	Pins
IO_1	IO_35	1	35
10_2	IO_36	2	36
IO_3	IO 37	3	37
IO_4	IO 38	4	38
IO_5	IO 39	5	39
IO_6	IO_40	6	40
IO 7	IO 41	7	41
IO 8	IO 42	8	42
IO 9	IO 43	9	43
IO_10	IO 44	10	44
IO_11	IO 45	11	45
IO_12	IO_46	12	46
IO_13	IO_47	13	47
IO_14	IO 48	14	48
IO_15	IO 49	15	49
IO_16	IO_50	16	50
IO_17	IO_51	17	51
IO_18	IO_52	18	52
IO_19	IO_53	19	53
IO_20	IO_54	20	54
IO_21	IO_55	21	55
IO_22	IO_56	22	56
IO_23	IO_57	23	57
IO_24	IO_58	24	58
IO_25	IO_59	25	59
IO_26	IO_60	26	60
IO_27	IO_61	27	61
IO_28	IO_62	28	62
IO_29	IO_63	29	63
IO_30	IO_64	30	64
IO_31	VCC	31	65
IO_32	VCC	32	66
IO_33	GND	33	67
IO_34	GND	34	68

PIM Module Pn4 I/O Interface Pin Assignment

The figure below gives the pin assignments for the PIM module I/O interface on the PIM-Universal-IO and routed from Pn4. Also see the user manual for your carrier board for more information.


Table 6: PIM Module Pn4 I/O Interface Pin Assignment

Signal	Names		ո4
IO 1	10_2	1	2
IO_3	IO 4	3	4
IO 5	IO 6	5	6
10_7	IO_8	7	8
IO_9	IO_10	9	10
IO_11	IO_12	11	12
IO_13	IO_14	13	14
IO_15	IO_16	15	16
IO_17	IO_18	17	18
IO_19	IO_20	19	20
IO_21	IO_22	21	22
IO_23	IO_24	23	24
IO_25	IO_26	25	26
IO_27	IO_28	27	28
IO_29	IO_30	29	30
IO_31	IO_32	31	32
IO_33	IO_34	33	34
IO_35	IO_36	35	36
IO_37	IO_38	37	38
IO_39	IO_40	39	40
IO_41	IO_42	41	42
IO_43	IO_44	43	44
IO_45	IO_46	45	46
IO_47	IO_48 IO_50	47	48
IO_49	IO_50	49	50
IO_51	IO_52	51	52
IO_53	IO_54	53	54
IO_55	IO_56	55	56
IO_57	IO_58	57	58
IO_59	IO_60	59	60
IO_61	IO_62	61	62
IO 63	IO 64	63	64

System Diagram

The figure below shows the relative connections of the PIM installed into the PIM carrier. The carrier attached to the rear of the backplane and the host to the front of the backplane. The PMC is attached to the host. The Pn4 I/O is routed from the PMC to the PIM to provide the PIM Bezel I/O. With the PMC and PIM-Universal-IO combination, the Pn4 I/O is the same for the 64 I/O signals on the two connectors. If the PMC has 1:1 routing between the PMC Bezel I/O and the Pn4 connector, then the pin definitions will be the same on the PMC Bezel connector and the PIM Bezel connector. If your PMC has an alternate wiring scheme, Dynamic Engineering can design a corresponding PIM to meet your requirements or you can use the PIM-Universal-IO with an alternate rear I/O definition. The SCSI connector may not match the Bezel I/O connector either. If you need a custom PIM designed with a different connector and/or compensating routing, please contact Dynamic Engineering.

Figure 2: PIM-Universal-IO System Diagram

Warranty and Repair

Please refer to the warranty page on our website for the warranty and options that are currently offered.

www.dyneng.com/warranty

Service Policy

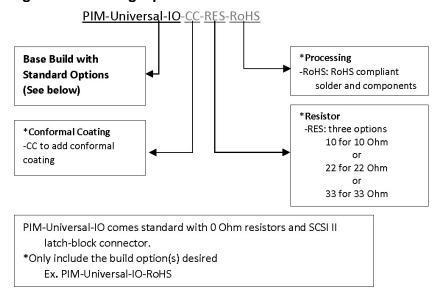
Before returning a product for repair, verify to the best of your ability, that the suspected unit is as fault. Then call the Dynamic Engineering Customer Service Department for a Return Material Authorization (RMA) number. Carefully package the product, in the original packaging if possible, and ship prepaid and insured with the RMA number clearly written on the outside of the package. Include a return address and the telephone number of a technical contact. For out-of-warranty repairs, a purchase order for repair charges must accompany the return. Dynamic Engineering will not be responsible for damages due to improper packaging of returned items. For service on Dynamic Engineering products not purchased directly from Dynamic Engineering, contact your reseller. Products returned to Dynamic Engineering for repair by anyone other than the original customer will be treated as out-of-warranty.

Out-of-Warranty Repairs

Out-of-warranty repairs will be billed on a material and labor basis. Customer approval will be obtained before repairing any item if the repair charges will exceed one half of the list price for one of that kind of unit. Return transportation and insurance will be billed as part of the repair in addition to the minimum RMA charge.

Contact:

Customer Service Department Dynamic Engineering 150 DuBois St. Suite C Santa Cruz, CA 95005 (831) 457-8891 support@dyneng.com


Ordering Information

Standard Temperature Range-Rated Components: -40 - 85°C

Table 7: Ordering Information

Product	Description			
PIM-Universal- IO	PIM with SCSI II latch-block style connector. Also available with screw terminal connector by special order. www.dyneng.com/PIM-Universal-IO			
	Options:			
PIM-Universal- IO	-RES special request 10 Ohm, 22 Ohm, or 33 Ohms			
	-RoHS	Use RoHS processing. Standard processing is "leaded."		
	-CC	Option to add conformal coating		
SCSI Cable: HDEcabl68	HDEcabl68 provides a SCSI compliant cable with either latch block or screw terminal retention. www.dyneng.com/HDEcabl68			
HDEterm68	SCSI II cable interface to 68-screw terminals. Comes with DIN rail mounting capability www.dyneng.com/HDEterm68			

Figure 3: Ordering Options PIM-Universal-IO

Dynamic Engineering PIM-Universal-IO Ordering Options Revision 01, August 24, 2020

Glossary

Baud Used as the bit period when talking about UARTs; Not strictly correct, but is

the common usage when talking about UARTs.

CardID Unique number assigned to a design to distinguish between all designs of a

particular vendor

CFM Cubic feet per minute

FIFO First In First Out memory

Flash Non-volatile memory used on Dynamic Engineering boards to store FPGA

configurations or BIOS

JTAG Joint Test Action Group – a standard used to control serial data transfer for

test and programming operations.

LFM Linear feet per minute

LVDS Low Voltage Differential Signaling

MUX Multiplexor – multiple signals multiplexed to one with a selection

mechanism to control which path is active.

Packed When UART characters are always sent/received in groups of four, allowing

full use of host bus/FIFO bandwidth.

Packet Group of characters transferred. When the characteristics of the group of

characters is known, the data can be stored in packets and transferred as such; the system is optimized as a result. Any number of characters can be

transferred.

PCI Peripheral Component Interconnect – parallel bus from host to this device

PIM PMC Interface Module (PIM). Provides rear I/O in cPCI systems. Mounts to

PIM Carrier

PIM Carrier PIM Mounting Device. Mounts on rear of cPCI backplane.

PMC PCI Mezzanine Card – establishes common connectors, connections, size

and other mechanical features.

TAP Test Access Port – basically a multi-state port that can be controlled with

JTAG [TMS, TDI, TDO, TCK]. The TAP States are the states in the State Machine that are controlled by the commands received over the JTAG link.

TCK Test Clock provides synchronization for the TDI, TDO, and TMS signals

TDI Test Data in – this serial line provides the data input to the device controlled

by the TMS commands. For example, the data to program the FLASH comes on the TDI line while the commands to the state machine to move through the necessary states comes over TMS. Rising edge of TCK valid.

TDO Test Data Out is the shifted data out. Valid on the falling edge of the TCK.

Not all states output data.

TMS Test Mode State – this serial line provides the state switching controls. '1'

indicates to move to the next state, '0' means stay put in cases where delays can happen; otherwise, 0,2 are used to choose which branch to take. Due to the complexity of state manipulation, the instructions are

usually precompiled. Rising edge of TCK valid.

UART Universal Asynchronous Receiver Transmitter. Common serialized data

transfer with start bit, stop bit, optional parity, optional 7/8 bit data. Can be

over any electrical interface. RS232 and RS422 are most common.

Unpacked When UART characters are sent on an unknown basis requiring single

character storage and transfer over the host bus

VendorID Manufacturers number for PCI/PCIe boards. DCBA is Dynamic

Engineering's VendorID

XMC Switched mezzanine card (PMC with PCIe)