
DYNAMIC ENGINEERING
150 DuBois St., Suite C Santa Cruz, CA 95060

(831) 457-8891 Fax (831) 457-4793
http://www.dyneng.com

sales@dyneng.com
Est. 1988

PCIeBiSerialDb37 LM9
Base

&

Channel

Driver Documentation

Win32 Driver Model

Manual Revision A
Corresponding Hardware: Revision A

10-2009-0401
Corresponding Firmware:
LM9: Design 1, Revision 1

 Embedded Solutions Page 2 of 28

LM9Base & LM9Chan
WDM Device Drivers for the
PcieBiserialDb37Lm9

Dynamic Engineering
150 DuBois St., Suite C
Santa Cruz, CA 95060
(831) 457-8891
FAX: (831) 457-4793

This document contains information of
proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the
recipient, by accepting this material, agrees that
the subject matter will not be copied or
reproduced, in whole or in part, nor its contents
revealed in any manner or to any person except
to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to
ensure that this manual is accurate and
complete. Still, the company reserves the right to
make improvements or changes in the product
described in this document at any time and
without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of
the application or use of the device described
herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this equipment
in a residential area is likely to cause radio
interference, in which case the user, at his own
expense, will be required to take whatever
measures may be required to correct the
interference.

Dynamic Engineering’s products are not
authorized for use as critical components in life
support devices or systems without the express
written approval of the president of Dynamic
Engineering.

Connection of incompatible hardware is likely to
cause serious damage.

©2009 by Dynamic Engineering.
Other trademarks and registered trademarks are
owned by their respective manufactures.
Manual Revision A Revised Oct. 12, 2009

 Embedded Solutions Page 3 of 28

Table of Contents
Introduction...5
Note..6
Driver Installation..7
Windows 2000 Installation ..8
Windows XP Installation ...8
Driver Startup ...9

IOCTL_LM9_BASE_GET_INFO..10
IOCTL_LM9_BASE_LOAD_PLL_DATA..10
IOCTL_LM9_BASE_READ_PLL_DATA..11
IOCTL_LM9_BASE_SET_BASEREG ...11
IOCTL_LM9_BASE_GET_BASEREG...11
IOCTL_LM9_BASE_GET_STATUS ..11
IOCTL_LM9_BASE_SET_GPIO_TERM..12
IOCTL_LM9_BASE_GET_GPIO_TERM ...12
IOCTL_LM9_BASE_SET_GPIO_DIR..12
IOCTL_LM9_BASE_GET_GPIO_DIR ...12
IOCTL_LM9_BASE_SET_GPIO_DATA ..12
IOCTL_LM9_BASE_GET_GPIO_DATA..12
IOCTL_LM9_BASE_GET_GPIO ...13
IOCTL_LM9_CHAN_GET_INFO ...14
IOCTL_LM9_CHAN_GET_STATUS..14
IOCTL_LM9_CHAN_CLR_STATUS..15
IOCTL_LM9_CHAN_SET_FIFO_LEVELS ..16
IOCTL_LM9_CHAN_GET_FIFO_LEVELS ..16
IOCTL_LM9_CHAN_GET_FIFO_COUNTS ..16
IOCTL_LM9_CHAN_RESET_FIFOS...16
IOCTL_LM9_CHAN_REGISTER_EVENT...16
IOCTL_LM9_CHAN_ENABLE_INTERRUPT ..17
IOCTL_LM9_CHAN_DISABLE_INTERRUPT ...17
IOCTL_LM9_CHAN_FORCE_INTERRUPT ..17
IOCTL_LM9_CHAN_GET_ISR_STATUS..18
IOCTL_LM9_CHAN_SWW_TX_FIFO ...18
IOCTL_LM9_CHAN_SWR_RX_FIFO..18
IOCTL_LM9_CHAN_SET_CONT..18
IOCTL_LM9_CHAN_GET_CONT..18
IOCTL_LM9_CHAN_SET_TX ...19
IOCTL_LM9_CHAN_GET_TX ...19

 Embedded Solutions Page 4 of 28

IOCTL_LM9_CHAN_SET_TX_COUNT...20
IOCTL_LM9_CHAN_GET_TX_COUNT ..20
IOCTL_LM9_CHAN_TX_PACKET_FIFO_WRITE...20
IOCTL_LM9_CHAN_TX_PACKET_FIFO_READ ..20
IOCTL_LM9_CHAN_SET_RX ...21
IOCTL_LM9_CHAN_GET_RX...21
IOCTL_LM9_CHAN_SET_RX_COUNT ..21
IOCTL_LM9_CHAN_GET_RX_COUNT..21
IOCTL_LM9_CHAN_RX_PACKET_FIFO_READ..22
IOCTL_LM9_CHAN_RX_SET_TIMEOUT ...22
IOCTL_LM9_CHAN_RX_GET_TIMEOUT...22

Write ...23
Read...23
Service Policy ...25

Out of Warranty Repairs ..25
For Service Contact: ...25

Appendix..26
Reference copy of structures for evaluation ...26

Base: ...26
Channel: ..27

 Embedded Solutions Page 5 of 28

Introduction

The LM9Base and LM9Chan drivers are Win32 driver model (WDM) device drivers for
the PCIeBiSerialDb37Lm9 from Dynamic Engineering.

The LM9 driver package has two parts. The driver is installed into the Windows® OS,
and the User Application “Userap” executable.

The driver is delivered as installed or executable items to be used directly or indirectly
by the user. The Userap code is delivered in source form [C] and is for the purpose of
providing a reference to using the driver.

UserAp is a stand-alone code set with a simple, and powerful menu plus a series of
“tests” that can be run on the installed hardware. Each of the tests execute calls to the
driver, pass parameters and structures, and get results back. With the sequence of
calls demonstrated, the functions of the hardware are utilized for loop-back testing. The
software is used for manufacturing test at Dynamic Engineering. For example most
Dynamic Engineering PCI based designs support DMA. DMA is demonstrated with the
memory based loop-back tests. The tests can be ported and modified to fit your
requirements.

The test software can be ported to your application to provide a running start. It is
recommended to port the switch and status tests to your application to get started. The
tests are simple and will quickly demonstrate the end-to-end operation of your
application making calls to the driver and interacting with the hardware.

The menu allows the user to add tests, to run sequences of tests, to run until a failure
occurs and stop or to continue, to program a set number of loops to execute and more.
The user can add tests to the provided test suite to try out application ideas before
committing to your system configuration. In many cases the test configuration will allow
faster debugging in a more controlled environment before integrating with the rest of the
system.

The hardware has features common to the board level and features that are set apart in
“channels”. The channels have the same offsets within the channel, and the same
status and control bit locations allowing for symmetrical software in the calling routines.
The driver supports the channels with a variable passed in to identify which channel is
being accessed. The hardware manual defines the pinout for each channel and the
bitmaps and detailed configurations for each channel. The driver handles all aspects of
interacting with the channels and base features.

We strive to make a useable product, and while we can guarantee operation we can’t
foresee all concepts for client implementation. If you have suggestions for extended
features, special calls for particular set-ups or whatever please share them with us,

 Embedded Solutions Page 6 of 28

[engineering@dyneng.com] and we will consider and in many cases add them.

The PCIeBiSerialDb37LM9 design has a Spartan3 Xilinx FPGA to implement the PCI
interface, FIFO’s and protocol control and status for the IO. The IO are grouped into
two ports; both part of channel 0. A Transmit port which sends data to the ARC-210
device and a Receiver port are provided. Please refer to the HW manual for a much
more complete description of the HW features.

When the PCIeBiSerialDb37Lm9 board is recognized by the PCI bus configuration utility
it will start the LM9Base driver which will create a device object for each board, initialize
the hardware, create a child devices for the channel and request loading of the
LM9Chan driver. The LM9Chan driver will create a device object for the I/O channel
and perform initialization on the channel. IO Control calls (IOCTLs) are used to
configure the board and read status. Read and Write calls are used to move blocks of
data in and out of the device.

Note

This documentation will provide information about all calls made to the drivers, and how
the drivers interact with the device for each of these calls. For more detailed
information on the hardware implementation, refer to the PCIeBiSerialDb37Lm9 user
manual (also referred to as the hardware manual).

 Embedded Solutions Page 7 of 28

Driver Installation

There are several files provided in each driver package. These files include driver:
LM9Base.sys, PcieBisDb37LM9.inf, DDLM9Base.h, LM9BaseGUID.h, LM9Chan.sys,
DDLM9Chan.h, LM9ChanGUID.h. Userap: User Application source files.

LM9BaseGUID.h and LM9ChanGUID.h are C header files that define the device
interface identifiers for the drivers. DDLM9Base.h and DDLM9Chan.h files are C
header files that define the Application Program Interface (API) to the drivers. These
files are required at compile time by any application that wishes to interface with the
drivers, but they are not needed for driver installation. The files are included with the
Userap fileset.

 Embedded Solutions Page 8 of 28

Windows 2000 Installation
Copy PcieBisDb37LM9.inf, LM9Base.sys and LM9Chan.sys to a floppy disk, or CD if
preferred. In some cases the files can be accessed over a network or from local HDD.
Substitute the network address for the floppy instructions to proceed with an over the
network installation.

With the hardware installed, power-on the PCI host computer and wait for the Found
New Hardware Wizard dialogue window to appear.
_ Select Next.
_ Select Search for a suitable driver for my device.
_ Select Next.
_ Insert the disk prepared above in the desired drive.
_ Select the appropriate drive e.g. Floppy disk drives.
_ Select Next.
_ The wizard should find the PmcLM9.inf file.
_ Select Next.
_ Select Finish to close the Found New Hardware Wizard.
The system should now see the channels and reopen the New Hardware Wizard.
Repeat this for each channel as necessary.

Windows XP Installation

Copy PcieBisDb37LM9.inf, LM9Base.sys and LM9Chan.sys to a floppy disk, or CD if
preferred. In some cases the files can be accessed over a network or from local HDD.
Substitute the network address for the floppy instructions to proceed with an over the
network installation.

With the hardware installed, power-on the PCI host computer and wait for the Found
New Hardware Wizard dialogue window to appear.
_ Insert the disk prepared above in the desired drive.
_ Select No when asked to connect to Windows Update.
_ Select Next.
_ Select Install the software automatically.
_ Select Next.
_ Select Finish to close the Found New Hardware Wizard.
The system should now see the channels and reopen the New Hardware Wizard.
Proceed as above for each channel as necessary.

 Embedded Solutions Page 9 of 28

Driver Startup

Once the drivers have been installed they will start automatically when the system
recognizes the hardware.

Handles can be opened to a specific board by using the CreateFile() function call and
passing in the device names obtained from the system.

The interfaces to the devices are identified using globally unique identifiers (GUIDs),
which are defined in LM9BaseGUID.h and LM9ChanGUID.h.

The User Application software contains a file called “main.c”. Main has the initialization
needed to get the handles to the base and channel assets of the installed
PCIeBiSerialDb37Lm9 device.

The main file provided is designed to work with our test menu and includes user
interaction steps to allow the user to select which board is being tested in a multiple
board environment. The integrator can hardcode for single board systems or use an
automatic loop to operate in multiple board systems without using user interaction. For
multiple user systems it is suggested that the board number is associated with a switch
setting so the calls can be associated with a particular board from a physical point of
view.

 Embedded Solutions Page 10 of 28

IO Controls
The drivers use IO Control calls (IOCTLs) to configure the device. IOCTLs refer to a
single Device Object, which controls a single board or I/O channel. IOCTLs are called
using the Win32 function DeviceIoControl() (see below), and passing in the handle to
the device opened with CreateFile() (see above). IOCTLs generally have input
parameters, output parameters, or both. Often a custom structure is used.

BOOL DeviceIoControl(
 HANDLE hDevice, // Handle opened with
CreateFile()
 DWORD dwIoControlCode, // Control code defined in API
header file
 LPVOID lpInBuffer, // Pointer to input parameter
 DWORD nInBufferSize, // Size of input parameter
 LPVOID lpOutBuffer, // Pointer to output parameter
 DWORD nOutBufferSize, // Size of output parameter
 LPDWORD lpBytesReturned, // Pointer to return length
parameter
 LPOVERLAPPED lpOverlapped, // Optional pointer to
overlapped structure
); // used for asynchronous I/O

The IOCTLs defined for the LM9Base driver are described below:
Please note that the address map is included in the DD file for reference when writing
your own driver for a different OS.

IOCTL_LM9_BASE_GET_INFO
 Function: Return the Instance Number, Switch value, PLL device ID, Xilinx rev and
Current Driver Version
 Input: None
Output: LM9_BASE_DRIVER_DEVICE_INFO : Structure
Notes: Switch value is the configuration of the on-board dip-switch that has been set by
the User (see the board silk screen for bit position and polarity). The PLL ID is the
device address of the PLL device. This value, which is set at the factory, is usually
0x69 but may also be 0x6A. See DDLM9Base.h for the definition of
LM9_BASE_DRIVER_DEVICE_INFO.

IOCTL_LM9_BASE_LOAD_PLL_DATA
Function: Loads the internal registers of the PLL.
Input: LM9_BASE_PLL_DATA structure
Output: None
Notes:

 Embedded Solutions Page 11 of 28

IOCTL_LM9_BASE_READ_PLL_DATA
Function: Returns the contents of the PLL’s internal registers
Input: None
Output: LM9_BASE_PLL_DATA structure
Notes: The register data is output in the LM9_BASE_PLL_DATA structure in an array
of 40 bytes.

IOCTL_LM9_BASE_SET_BASEREG
Function: Write to Base Control Register - general access to base control register of
card, use with bit definitions
Input: ULONG
Output: none
Notes: Use for general purpose – bit mapped access to the base control register.

IOCTL_LM9_BASE_GET_BASEREG
Function: Read from Base Control Register - general access from base control register
of card, use with bit definitions
Input: none
Output: ULONG
Notes: Use for general purpose – bit mapped access to the base control register.

IOCTL_LM9_BASE_GET_STATUS
Function: Read from Status Register
Input: none
Output: ULONG
Notes: Use for general purpose – bit mapped access from the register. See
DDLM9Base.h for bit map information. See the HW manual for exact definitions of bits.

 Embedded Solutions Page 12 of 28

// GPIO Control Section
// IO not currently used by the ARC-210 IF is available for GP use
// Bits are aligned to “0” in registers and remapped to actual IO
// 6 used for ARC-210, 12 available in GPIO

IOCTL_LM9_BASE_SET_GPIO_TERM
Function: Write to GPIO Termination Control Register
Input: ULONG
Output: none
Notes: Set bits to turn on termination for those bits

IOCTL_LM9_BASE_GET_GPIO_TERM
Function: Read from GPIO Termination Control Register
Input: none
Output: ULONG
Notes:

IOCTL_LM9_BASE_SET_GPIO_DIR
Function: Write to GPIO Direction Control Register
Input: ULONG
Output: none
Notes: Set bits to select transmit, clear for receive

IOCTL_LM9_BASE_GET_GPIO_DIR
Function: Read from GPIO Direction Control Register
Input: none
Output: ULONG
Notes:

IOCTL_LM9_BASE_SET_GPIO_DATA
Function: Write to GPIO Data Control Register
Input: ULONG
Output: none
Notes: Set output data pattern here. Only TX enabled bits will be transmitted

IOCTL_LM9_BASE_GET_GPIO_DATA
Function: Read from GPIO Data Control Register
Input: none
Output: ULONG
Notes: Read back of control register. For IO Data see next IOCTl

 Embedded Solutions Page 13 of 28

IOCTL_LM9_BASE_GET_GPIO
Function: Read from GPIO IO lines
Input: none
Output: ULONG
Notes: Read all lines whether TX or RX defined. Use previous IOCTL for read-back of
Data register.

 Embedded Solutions Page 14 of 28

The IOCTLs defined for the LM9Chan driver are described below:
In the LM9 implementation both the Transmitter and the Receiver interface are
implemented within the same channel (0). The Receiver accepts data from the
external equipment. The Transmitter provides data to the external equipment.

Address and bit map information is included in the DDLM9Chan.h file to support those
who are writing drivers for other OS.

IOCTL_LM9_CHAN_GET_INFO
Function: Return the Instance Number and Current Driver Version
Input: None
Output: LM9_CHAN_DRIVER_DEVICE_INFO structure
Notes: See the definition of LM9_CHAN_DRIVER_DEVICE_INFO in the
DDLM9Chan.h header file.

IOCTL_LM9_CHAN_GET_STATUS
Function: Return the value of the status register and clear latched bits
Input: None
Output: Status register value(ULONG)
Notes: Latched interrupt and error status are cleared by write-back. See quick
reference status bits below. Defines available in DDLM9Chan.h Detailed definitions
are available in the HW manual.

#define STAT_TX_FIFO_MT 0x00000001 //0 set when TX FIFO is empty
#define STAT_TX_FIFO_AE 0x00000002 //1 set when TX FIFO is Almost

Empty
#define STAT_TX_FIFO_FULL 0x00000004 //2 set when TX FIFO is Full

#define STAT_RX_FIFO_MT 0x00000010 //4 set when RX FIFO is Empty
#define STAT_RX_FIFO_AF 0x00000020 //5 set when RX FIFO is Almost

Full
#define STAT_RX_FIFO_FULL 0x00000040 //6 set when RX FIFO is Full

#define STAT_RX_PARITY_ERROR 0x00000200 //9 Set when RX state machine
creates an interrupt, latched - clear with write

#define STAT_TX_AE_INT_LAT 0x00000400 //10 Transmit FIFO Interrupt
occurred, latched - clear with write

#define STAT_RX_AF_INT_LAT 0x00000800 //11 Receive FIFO Interrupt
occurred, latched - clear with write

#define STAT_WR_DMA_ERR 0x00001000 //12 write DMA error, latched -
clear with write

#define STAT_RD_DMA_ERR 0x00002000 //13 read DMA error, latched -

 Embedded Solutions Page 15 of 28

clear with write
#define STAT_WR_DMA_INT 0x00004000 //14 write DMA Interrupt, latched -

clear with write
#define STAT_RD_DMA_INT 0x00008000 //15 read DMA Interrupt, latched -

clear with write

#define STAT_TXPKTDONE 0x00010000 //16 set when TX packet
completed, latched - clear with write

#define STAT_RXPKTDONE 0x00020000 //17 set when RX packet
completed, latched - clear with write

#define STAT_RX_OVFL_ERR 0x00040000 //18 Set when RX overflow error
occurred, latched - clear with write

#define STAT_TX_UNFL_ERR 0x00080000 //19 Set when TX underflow error
occurred, latched - clear with write

#define STAT_RX_IDLE 0x00100000 //20 set when RX is in Idle state
#define STAT_TX_IDLE 0x00200000 //21 set when TX is in Idle state
#define STAT_DMA_RD_IDLE 0x00400000 //22 set when Burst Out [read]

DMA state-machine is in the idle state
#define STAT_DMA_WR_IDLE 0x00800000 //23 set when Burst In [write] DMA

state-machine is in the idle state

#define TX_PACKET_FIFO_MT 0x01000000 //24 Tx Packet FIFO is MT when
set

#define TX_PACKET_FIFO_FULL 0x02000000 //25 Tx Packet FIFO is FULL
when set

#define RX_PACKET_FIFO_MT 0x04000000 //26 Rx Packet FIFO is MT when
set

#define RX_PACKET_FIFO_FULL 0x08000000 //27 Rx Packet FIFO is FULL
when set

#define LOCAL_INT 0x40000000 //30 non DMA interrupt status
before channel mask

#define STAT_ACTIVE_INT 0x80000000 //31 channel interrupt is active
[after mask and includes DMA]

IOCTL_LM9_CHAN_CLR_STATUS
Function: Clear Error Bits latched and not cleared by status read
Input: ULONG
Output: none
Notes: Clear latched error bits. Allows polling on FIFO status without losing potential
Error conditions. Write back with same bit position set to clear. Defines available in
DDLM9Chan.h Detailed definitions are available in the HW manual.

 Embedded Solutions Page 16 of 28

IOCTL_LM9_CHAN_SET_FIFO_LEVELS
Function: Sets the transmitter almost empty and receiver almost full levels for the channel.
Input: LM9_CHAN_FIFO_LEVELS structure
Output: None
Notes: The FIFO counts are compared to these levels to determine the value of the
STAT_TX_FF_AMT and STAT_RX_FF_AFL status bits.

IOCTL_LM9_CHAN_GET_FIFO_LEVELS
Function: Returns the transmitter almost empty and receiver almost full levels for the channel.
Input: None
Output: LM9_CHAN_FIFO_LEVELS structure
Notes:

IOCTL_LM9_CHAN_GET_FIFO_COUNTS
Function: Returns the number of data words in FIFO’s.
Input: None
Output: LM9_CHAN_FIFO_COUNTS structure
Notes: Returns the actual TX FIFO data counts and count including DMA pipeline RX
FIFO.

IOCTL_LM9_CHAN_RESET_FIFOS
Function: Resets one or both internal FIFOs for the referenced channel.
Input: LM9_FIFO_SEL enumeration type See structure definition in DDLM9Chan.h
Output: None
Notes: Resets Transmit, Receive, Both (Transmit and Receive) .

IOCTL_LM9_CHAN_REGISTER_EVENT

Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned
from that call as the input to this IOCTL. The driver then obtains a system pointer to the
event and signals the event when a user interrupt is serviced. The user interrupt
service routine waits on this event, allowing it to respond to the interrupt. The DMA
interrupts do not cause the event to be signaled.

 Embedded Solutions Page 17 of 28

IOCTL_LM9_CHAN_ENABLE_INTERRUPT

Function: Enables the channel Master Interrupt.
Input: None
Output: None
Notes: This command must be run to allow the board to respond to user interrupts.
The master interrupt enable is disabled in the driver interrupt service routine when a
user interrupt is serviced. Therefore this command must be run after each interrupt
occurs to re-enable it.

IOCTL_LM9_CHAN_DISABLE_INTERRUPT

Function: Disables the channel Master Interrupt.
Input: None
Output: None
Notes: This call is used when user interrupt processing is no longer desired.

IOCTL_LM9_CHAN_FORCE_INTERRUPT

Function: Causes a system interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the PCI bus as long as the channel
master interrupt is enabled. This IOCTL is used for development, to test interrupt
processing. Board level master interrupt also needs to be set.

 Embedded Solutions Page 18 of 28

IOCTL_LM9_CHAN_GET_ISR_STATUS

Function: Returns the interrupt status read in the ISR from the last user interrupt.
Input: None
Output: Interrupt status value (unsigned long integer)
Notes: Returns the interrupt status that was read in the interrupt service routine of the
last interrupt caused by one of the enabled channel interrupts. The interrupts that deal
with the DMA transfers do not affect this value. Masked version of channel status.

IOCTL_LM9_CHAN_SWW_TX_FIFO
Function: Writes a 32-bit data word to the transmit FIFO.
Input: FIFO word (unsigned long integer)
Output: none
Notes: Used to make single-word accesses to the transmit FIFO instead of using DMA.

IOCTL_LM9_CHAN_SWR_RX_FIFO
Function: Returns a 32-bit data word from the receive FIFO.
Input: None
Output: FIFO word (unsigned long integer)
Notes: Used to make single-word accesses to the receive FIFO instead of using DMA.
Please note, Data read from this port is no longer available in the FIFO for DMA or other
use.

IOCTL_LM9_CHAN_SET_CONT
Function: write to Channel Control register using structure
Input: LM9_CHAN_CONT
Output: None
Notes: See DDLM9Chan.h for structure. See below for quick reference.

IOCTL_LM9_CHAN_GET_CONT
Function: Read from Channel Control register using structure
Input: None
Output: LM9_CHAN_CONT
Notes: See DDLM9Chan.h for structure. See below for quick reference.

FifoTestEn; // BiPass Mode Control
MIntEn; // Master Interrupt Enable
WrDmaEn; // Write DMA Interrupt Enable
RdDmaEn; // Read DMA Interrupt Enable
TxUrgent; // Set for higher priority TX DMA processing
RxUrgent; // Set for higher priority RX DMA processing

 Embedded Solutions Page 19 of 28

IOCTL_LM9_CHAN_SET_TX
Function: write to Channel Tx Control register using structure
Input: LM9_CHAN_TX_CONTROL
Output: None
Notes: See DDLM9Chan.h for structure.

IOCTL_LM9_CHAN_GET_TX
Function: Read from Channel Master Control register using structure
Input: None
Output: LM9_CHAN_TX_CONTROL
Notes: See DDLM9Chan.h for structure.

Quick Reference:
 BOOLEAN TxStart; //0 start TX state machine
 BOOLEAN TxIntEn; //2 set to enable TX interrupt
 BOOLEAN TxAEIntEn; //3 set to enable TX FIFO based interrupt

[almost empty]
 BOOLEAN TxUnFlEn; //4 set to enable UnderFlow interrupt
 BOOLEAN TxByteOrder; //5 set to reverse bytes before sending
 BOOLEAN TxBitOrder; //6 set to reverse bits before sending
 BOOLEAN TxClkPol; //7 Set to change on falling edge [rising valid]

clear to change on rising edge [falling valid]
 BOOLEAN TxRegPacket; //8 Set to use register data path instead of

FIFO path
 BOOLEAN TxParity; //9 Set to use odd parity else use even parity
 BOOLEAN TxClockDir; //12 Set to enable SENDTIMING to be

transmitted instead of received
 BOOLEAN TxClockSrc; //13 Set to use divided PLL else use PLL rate
 BOOLEAN TxStartBit; //14 Start bit sense - should be opposite of

Marking state
 BOOLEAN TxMarkBit; //15 Marking bit sense - should be opposite of

Start

 Embedded Solutions Page 20 of 28

IOCTL_LM9_CHAN_SET_TX_COUNT
Function: write to Channel TXCount register
Input: ULONG
Output: None
Notes: Set the count for the Transmit packet count in bytes. Please note that the
control bit “TxRegPacket” selects whether this register or the Tx Packet FIFO is used as
the source of the defined packets.

IOCTL_LM9_CHAN_GET_TX_COUNT
Function: Read from Channel TX Count Register
Input: None
Output: ULONG
Notes:

IOCTL_LM9_CHAN_TX_PACKET_FIFO_WRITE
Function: write to Channel TX Packet FIFO
Input: ULONG
Output: None
Notes: Set the count for the Transmit packet count in bytes. Please note that the
control bit “TxRegPacket” selects whether this register or the Tx Packet FIFO is used as
the source of the defined packets. FIFO is 2K x 32. Status available for Full and
Empty conditions in Status register.

IOCTL_LM9_CHAN_TX_PACKET_FIFO_READ
Function: Read from Channel TX Packet FIFO
Input: None
Output: ULONG
Notes: Read back port for test purposes. Once read, data is no longer in the FIFO for
transmission purposes.

 Embedded Solutions Page 21 of 28

IOCTL_LM9_CHAN_SET_RX
Function: write to Channel Receiver Control register using structure
Input: LM9_CHAN_RX_CONTROL
Output: None
Notes: See DDLM9Chan.h for structure.

IOCTL_LM9_CHAN_GET_RX
Function: Read from Channel Receiver Control register using structure
Input: None
Output: LM9_CHAN_RX_CONTROL
Notes: See DDLM9Chan.h for structure.

Quick Reference:
 BOOLEAN RxStart; //0 set to begin RX Data Acquisition
 BOOLEAN RxParityErrEn; //1 set to enable Parity Error Interrupt
 BOOLEAN RxIntEn; //2 set to enable RX interrupt
 BOOLEAN RxAFIntEn; //3 set to enable RX FIFO based interrupt

[almost full]
 BOOLEAN RxOvFlEn; //4 set to enable RX OverFlow interrupt
 BOOLEAN RxByteOrder; //5 set to reverse bytes after receiving
 BOOLEAN RxBitOrder; //6 set to reverse bits before sending
 BOOLEAN RxClkPol; //7 Set to use rising edge of clock or clear for

falling edge valid data
 BOOLEAN RxParity; //9 Set to use odd parity else use even parity
 BOOLEAN RxTimeOutEn; //10 Set to use timeout control, 0 to ignore
 BOOLEAN RxStartBit; //14 Start bit sense - should be opposite of

Marking state
 BOOLEAN RxMartBit; //15 Marking bit sense - should be opposite of

Start

IOCTL_LM9_CHAN_SET_RX_COUNT
Function: write to Channel Receiver Count register
Input: ULONG
Output: None
Notes: Set the count for the size of a data block to be received. The count is in Bytes.
If not known the timeout feature can be used.

IOCTL_LM9_CHAN_GET_RX_COUNT
Function: Read from Channel Receiver Count register
Input: None
Output: ULONG
Notes:

 Embedded Solutions Page 22 of 28

IOCTL_LM9_CHAN_RX_PACKET_FIFO_READ
Function: Read from Channel RX Packet FIFO
Input: None
Output: ULONG
Notes: FIFO is 2K x 32. Status available for Full and Empty conditions in Status
register. Packet definitions are size of data stored in Data FIFO. Status should be used
to validate Packet FIFO. If “over read” data will be last data. Can be read in response
to RX Packet Interrupt and then corresponding data read from Data FIFO.

IOCTL_LM9_CHAN_RX_SET_TIMEOUT
Function: write to Channel Receiver TimeOut Register
Input: ULONG
Output: None
Notes: Set the Time Out length based on 33 MHz clock. [Program the number of
periods of the reference clock desired.] When a gap between bytes is greater than the
Time Out as defined in this register the previously captured data is “packetized” by
storing the Packet Size and setting the RX Packet Completed bit. Additional data will
become part of the next Packet received.

IOCTL_LM9_CHAN_RX_GET_TIMEOUT
Function: Read from Channel Receiver TimeOut Register
Input: None
Output: ULONG
Notes:

 Embedded Solutions Page 23 of 28

Write
DMA data is written to the referenced I/O channel device using the write command.
Writes are executed using the Win32 function WriteFile() and passing in the handle to
the I/O channel device opened with CreateFile(), a pointer to a pre-allocated buffer
containing the data to be written, an unsigned long integer that represents the size of
that buffer in bytes, a pointer to an unsigned long integer to contain the number of bytes
actually written, and a pointer to an optional Overlapped structure for performing
asynchronous IO.

Read

DMA data is read from the referenced I/O channel device using the read command.
Reads are executed using the Win32 function ReadFile() and passing in the handle to
the I/O channel device opened with CreateFile(), a pointer to a pre-allocated buffer that
will contain the data read, an unsigned long integer that represents the size of that
buffer in bytes, a pointer to an unsigned long integer to contain the number of bytes
actually read, and a pointer to an optional Overlapped structure for performing
asynchronous IO.

Examples of using DMA are provided in the reference software FIFO and IO loop-tests.

 Embedded Solutions Page 24 of 28

Warranty and Repair
Dynamic Engineering warrants this product to be free from defects under normal use
and service and in its original, unmodified condition, for a period of one year from the
time of purchase. If the product is found to be defective within the terms of this
warranty, Dynamic Engineering's sole responsibility shall be to repair, or at Dynamic
Engineering's sole option to replace, the defective product.

Dynamic Engineering's warranty of and liability for defective products is limited to that
set forth herein. Dynamic Engineering disclaims and excludes all other product
warranties and product liability, expressed or implied, including but not limited to any
implied warranties of merchandisability or fitness for a particular purpose or use, liability
for negligence in manufacture or shipment of product, liability for injury to persons or
property, or for any incidental or consequential damages.

Dynamic Engineering’s products are not authorized for use as critical components in life
support devices or systems without the express written approval of the president of
Dynamic Engineering.

 Embedded Solutions Page 25 of 28

Service Policy

Before returning a product for repair, verify as well as possible that the driver is at fault.
The driver has gone through extensive testing and in most cases it will be “cockpit error”
rather than an error with the driver. When you are sure or at least willing to pay to have
someone help then call the Customer Service Department and arrange to speak with an
engineer. We will work with you to determine the cause of the issue. If the issue is one
of a defective driver we will correct the problem and provide an updated module(s) to
you [no cost]. If the issue is of the customer’s making [anything that is not the driver]
the engineering time will be invoiced to the customer. Pre-approval may be required in
some cases depending on the customer’s invoicing policy.

Out of Warranty Repairs

Out of warranty support will be billed. The current minimum repair charge is $125. An
open PO will be required.

For Service Contact:

Customer Service Department
Dynamic Engineering
150 DuBois Street, Suite C
Santa Cruz, CA 95060
831-457-8891
831-457-4793 Fax

support@dyneng.com

All information provided is Copyright Dynamic Engineering.

 Embedded Solutions Page 26 of 28

Appendix
Reference copy of structures for evaluation

The following structures shown are available in the DDORBChan.h and DDLM9Base.h
files included with the driver. The structures are included here for your evaluation when
considering the driver package. The electronic versions included with the driver should
be used with your project. The names track the register bit definitions. For details about
particular signals please refer to the HW manual.

Base:

#define PLL_MESSAGE1_SIZE 16
#define PLL_MESSAGE2_SIZE 24
#define PLL_MESSAGE_SIZE (PLL_MESSAGE1_SIZE + PLL_MESSAGE2_SIZE)

 // Driver/Device information
typedef struct _LM9_BASE_DRIVER_DEVICE_INFO
{
 UCHAR DriverVersion;
 UCHAR XilinxVersion;
 UCHAR XilinxDesign;
 UCHAR PllDeviceId;
 UCHAR SwitchValue;
 ULONG InstanceNumber;
} LM9_BASE_DRIVER_DEVICE_INFO, *PLM9_BASE_DRIVER_DEVICE_INFO;

typedef struct _LM9_BASE_PLL_DATA
{
 UCHAR Data[PLL_MESSAGE_SIZE];
} LM9_BASE_PLL_DATA, *PLM9_BASE_PLL_DATA;

 Embedded Solutions Page 27 of 28

Channel:

typedef struct _LM9_CHAN_DRIVER_DEVICE_INFO
{
 UCHAR DriverVersion;
 ULONG InstanceNumber;
} LM9_CHAN_DRIVER_DEVICE_INFO, *PLM9_CHAN_DRIVER_DEVICE_INFO;

typedef enum _LM9_CHAN_FIFO_SEL {LM9_MAS, LM9_TAR, LM9_BOTH}
LM9_CHAN_FIFO_SEL, *PLM9_CHAN_FIFO_SEL;

typedef struct _LM9_CHAN_FIFO_LEVELS
{
 USHORT AlmostFull; // Set to control Master HW with Almost full definition
 USHORT AlmostEmpty; // set to control Target HW with Almost Empty definition,
Also controls Interrupt request
} LM9_CHAN_FIFO_LEVELS, *PLM9_CHAN_FIFO_LEVELS;

typedef struct _LM9_CHAN_FIFO_COUNTS
{
 USHORT RxCountwPipe;
 USHORT TxCount;
} LM9_CHAN_FIFO_COUNTS, *PLM9_CHAN_FIFO_COUNTS;

typedef struct _LM9_CHAN_CONT
{
 BOOLEAN FifoTestEn;// BiPass Mode Control
 BOOLEAN MIntEn; // Master Interrupt Enable
 BOOLEAN WrDmaEn; // Write DMA Interrupt Enable
 BOOLEAN RdDmaEn; // Read DMA Interrupt Enable
 BOOLEAN TxUrgent; // Set for higher priority TX DMA processing
 BOOLEAN RxUrgent; // Set for higher priority RX DMA processing
} LM9_CHAN_CONT, *PLM9_CHAN_CONT;

 Embedded Solutions Page 28 of 28

typedef struct _LM9_CHAN_RX_CONTROL
{
 BOOLEAN RxStart; //0 set to begin RX Data Acquisition
 BOOLEAN RxParityErrEn; //1 set to enable Parity Error Interrupt
 BOOLEAN RxIntEn; //2 set to enable RX interrupt
 BOOLEAN RxAFIntEn; //3 set to enable RX FIFO based interrupt [almost full]
 BOOLEAN RxOvFlEn; //4 set to enable RX OverFlow interrupt
 BOOLEAN RxByteOrder; //5 set to reverse bytes after receiving
 BOOLEAN RxBitOrder; //6 set to reverse bits before sending
 BOOLEAN RxClkPol; //7 Set to use rising edge of clock or clear for falling edge valid
 BOOLEAN RxParity; //9 Set to use odd parity else use even parity
 BOOLEAN RxTimeOutEn; //10 Set to use timeout control, 0 to ignore
 BOOLEAN RxStartBit; //14 Start bit sense - should be opposite of Marking state
 BOOLEAN RxMartBit; //15 Marking bit sense - should be opposite of Start bit
} LM9_CHAN_RX_CONTROL, *PLM9_CHAN_RX_CONTROL;

typedef struct _LM9_CHAN_TX_CONTROL
{
 BOOLEAN TxStart; //0 start TX state machine
 BOOLEAN TxIntEn; //2 set to enable TX interrupt
 BOOLEAN TxAEIntEn; //3 set to enable TX FIFO based interrupt [almost empty]
 BOOLEAN TxUnFlEn; //4 set to enable UnderFlow interrupt
 BOOLEAN TxByteOrder; //5 set to reverse bytes before sending
 BOOLEAN TxBitOrder; //6 set to reverse bits before sending
 BOOLEAN TxClkPol; //7 Set to change on falling edge clear to change on rising edge
 BOOLEAN TxRegPacket; //8 Set to use register data path instead of FIFO path
 BOOLEAN TxParity; //9 Set to use odd parity else use even parity
 BOOLEAN TxClockDir; //12 Set to enable SENDTIMING to be transmitted
 BOOLEAN TxClockSrc; //13 Set to use divided PLL else use PLL rate
 BOOLEAN TxStartBit; //14 Start bit sense - should be opposite of Marking state
 BOOLEAN TxMarkBit; //15 Marking bit sense - should be opposite of Start bit
} LM9_CHAN_TX_CONTROL, *PLM9_CHAN_TX_CONTROL;

