DYNAMIC ENGINEERING 150 DuBois, Suite C Santa Cruz, CA 95060 (831) 457-8891 Fax (831) 457-4793 <u>http://www.dyneng.com</u> <u>sales@dyneng.com</u> Est. 1988

User Manual

PMC-BISERIAL-III BA23

Eight-Channel UART Interface PMC Module

Revision A3 Corresponding Hardware: Revision D, E 10-2005-0204/0205 Corresponding Firmware: Revision 3

PMC-BiSerial-III BA23

Eight-Channel PMC Based UART Interface

Dynamic Engineering 150 DuBois, Suite C Santa Cruz, CA 95060 (831) 457-8891 FAX: (831) 457-4793

©2014 by Dynamic Engineering. Other trademarks and registered trademarks are owned by their respective manufactures. Manual Revision A3 Revised January 31st, 2014 This document contains information of proprietary interest to Dynamic Engineering. It has been supplied in confidence and the recipient, by accepting this material, agrees that the subject matter will not be copied or reproduced, in whole or in part, nor its contents revealed in any manner or to any person except to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to ensure that this manual is accurate and complete. Still, the company reserves the right to make improvements or changes in the product described in this document at any time and without notice. Furthermore, Dynamic Engineering assumes no liability arising out of the application or use of the device described herein.

The electronic equipment described herein generates, uses, and can radiate radio frequency energy. Operation of this equipment in a residential area is likely to cause radio interference, in which case the user, at his own expense, will be required to take whatever measures may be required to correct the interference.

Dynamic Engineering's products are not authorized for use as critical components in life support devices or systems without the express written approval of the president of Dynamic Engineering.

Connection of incompatible hardware is likely to cause serious damage.

Table of Contents

PRODUCT DESCRIPTION	6
Description for Channels 0-5	8
Description for Channels 6-7	9
THEORY OF OPERATION	12
PROGRAMMING	16
ADDRESS MAP (BAR 0)	17
ADDRESS MAP (BAR 1)	19
Register Definitions	20
BA23_BASE_CONTROL	20
BA23_CHAN_0-5_CONTROL	23
BA23_CHAN_0-5_STATUS	24
BA23_CHAN_0-5_WR_DMA_PNTR	27
BA23_CHAN_0-5_TX_ADDRESS	27
BA23_CHAN_0-5_KD_DMA_PN1K BA22_CHAN_0.5_DX_ADDDESS	28
DA25_CHAN_0-5_KA_ADDRE55 BA23_CHAN_0.5_KA_ADDR_LAT	20
BA23 CHAN 0-5 TRIG CNT LAT	30
BA23 CHAN 0-5 TRIG HICNT OUT	31
BA23 CHAN 0-5 TRIG LOCNT OUT	31
BA23_CHAN_0-5_DSCRT_OUT_LAT	32
BA23_CHAN_0-5_TX_CONTROL	33
BA23_CHAN_0-5_RX_CONTROL	35
BA23_CHAN_0-5_TX_UART_LATCH	37
BA23_CHAN_0-5_IX_START_LATCH	38
BA23_CHAN_0-5_KX_SIAKI_LAICH DA22_CHAN_0.5_DV_DVTE_COUNT	58 20
BA23 RX MESSAGE STATUS WORD	39
Dh25_kk_hlb5h6L_5hk165_06kD	57
BA23 Channel 6 & 7 Bit Maps	40
BA22_CHAN_6-7_CNTRL	40
BA22_CHAN_6-7_STATUS	43
BA22_CHAN_6-7_WR_DMA_PNTR	46
BA22_CHAN_6-7_TX_FIFO_COUNT	47
BA22_CHAN_6-/_KD_DMA_PNTK	47
BA22_CHAN_6-/_KX_FIFO_CUUNT DA22_CHAN_6-7_EIEO	48
DALL UHAN 0-1 FIFU	48

BA22_CHAN_6-7_TX_AMT_LVL BA22_CHAN_6-7_RX_AFL_LVL	49 49
Loop-back Full-Duplex Loop-Back Half-Duplex Loop-Back	50 50 51
PMC PCI PN1 INTERFACE PIN ASSIGNMENT	52
PMC PCI PN2 INTERFACE PIN ASSIGNMENT	53
FRONT PANEL I/O PIN ASSIGNMENT	54
APPLICATIONS GUIDE	55
Interfacing	55
CONSTRUCTION AND RELIABILITY	56
THERMAL CONSIDERATIONS	56
WARRANTY AND REPAIR	56
Service Policy Out of Warranty Repairs	57 57
For Service Contact:	57
SPECIFICATIONS	58
ORDER INFORMATION	59
SCHEMATICS	59

List of Figures

FIGURE 1	PMC-BISERIAL-III BLOCK DIAGRAM	6
FIGURE 2		1
FIGURE 3	PMC-BISERIAL-III BA23 0&7 BLUCK DIAGRAM	9
FIGURE 4	PMC-BISERIAL-III BA23 BARU ADDRESS MAP	18
FIGURE 5	PMC-BISERIAL-III BA23 BART MEMORY BLOCK ADDRESS MAP	19
FIGURE 0	PMC-BISERIAL-III BA23 BASE CONTROL	20
FIGURE /	PMC-BISERIAL-III BA23 USER SWITCH PORT	22
FIGURE 8	PMC-BISERIAL-III BA23 CHANNEL CONTROL	23
FIGURE 9	PMC-BISERIAL-III BA23 CHAININEL STATUS	24
FIGURE 10		27
FIGURE 11	PINC-BISERIAL-III BA23 TX RAIN ADDRESS OFFSETS	27
FIGURE 12	PING-DISERIAL-III DA23 READ DINA POINTER	20
FIGURE 13	PING-BISERIAL-III BA23 KX RAW ADDRESS OFFSETS	28
FIGURE 14		29
FIGURE 13		3U 21
FIGURE 10		১ । ১1
FIGURE 17		১ । ১০
FIGURE 10		3Z
FIGURE 19		33 25
FIGURE 20		30 27
FIGURE 21		20
FIGURE 22		30 20
FIGURE 23		30
FIGURE 24		20
FIGURE 23		39
FIGURE 27		40
FIGURE 28		40
FIGURE 20	PMC-BISERIAL-III BA23 TX FIED DATA COUNT PORT	40
FIGURE 30	PMC-BISERIAL-III BA23 READ DMA POINTER REGISTER	47
FIGURE 31	PMC-BISERIAL-III BA23 RX FIED DATA COUNT PORT	18
FIGURE 32	PMC-BISERIAL-III BA23 RX/TX FIEO PORT	40
FIGURE 33	PMC-BISERIAL-III BA23 TX ALMOST EMPTY LEVEL REGISTER	40
FIGURE 34	PMC-BISERIAL-III BA23 RX ALMOST ELILL LEVEL REGISTER	49
FIGURE 35	PMC-BISERIAI -III BA23 PN1 INTERFACE	52
FIGURE 36	PMC-BISERIAL-III BA23 PN2 INTERFACE	53
FIGURE 37	PMC-BISERIAL-III BA23 FRONT PANEL INTERFACE	54
• •		• •

Product Description

The PMC-BiSerial-III BA23 is part of the PMC Module family of modular I/O products by Dynamic Engineering. It meets the PMC and CMC draft Standards. In standard configuration, the PMC-BiSerial-III BA23 is a Type 1 mechanical with only low profile passive components on the back of the board, one slot wide, with 10 mm inter-board height. Contact Dynamic Engineering for a copy of this specification. It is assumed that the reader is at least casually familiar with this document and basic logic design.

FIGURE 1

PMC-BISERIAL-III BLOCK DIAGRAM

The PMC-BiSerial-III is capable of providing multiple protocols using either LVDS or RS-485 I/O standards. The PMC-BiSerial-III standard configuration shown in Figure 1 has two optional data FIFO's that can be as large as 128k x 32 bits to accommodate designs requiring a large amount of buffering. In most designs these FIFO's are not installed and internal FIFO's or dual-port RAM's implemented with block RAM in the Xilinx FPGA are used instead.

FIGURE 2

PMC-BISERIAL-III BA23 BLOCK DIAGRAM

The PMC-BiSerial-III BA23 configuration for channels 0-5 is shown in figure 2. The protocol implemented provides six I/O channels each with two RS-485 transceivers.

The on-board PLL is used to generate three clocks. PLL clock A supplies the clock reference for the asynchronous message interfaces in channels 0-5. PLL clock B supplies the clock reference for the discrete output signal, and the discrete input trigger signal monitoring functions. PLL clock C supplies the clock reference for the 32 bit UART's in channels 6 & 7. The PLL is programmable and uses a 20 MHz reference signal to generate a wide range of frequencies. The UART interface in channels 0-5 can operate at up to 10 M bits/second using a 160 MHz reference clock.

Description for Channels 0-5

Data for all channels is sent and received LSB first using a low start-bit and one or two high stop-bits to separate data bytes. An optional parity bit following the eight data bits can be configured to implement odd, even, mark (always high), or space (always low) parity. The marking (idle) state of the interface is high. Transmit and receive messages always start on a 32-bit word boundary. Unsent bytes in a 32-bit transmit word are ignored and unpopulated bytes in the last 32-bit received word are filled with zeros.

Each channel can be configured for either half or full-duplex operation. In half-duplex mode, the receiver data is read from the transmit I/O while the transmitter is in a high impedance state. Pull-up / pull-down resistor packs can be installed on the eight transmit I/O lines to suppress glitching when switching directions in half-duplex mode.

Each channel of the BA23 implementation has a 16 Mbyte RAM for storing message data for the transmit function and an 8 Mbyte RAM for storing received message data. Each RAM's address space is mapped to the PCI bus Base Address Register 1 (BAR1) to allow write and read access to / from individual 32-bit words. In addition, write DMA access to the transmit RAM and read DMA access from the receive RAM is used to move larger data blocks. The starting address offsets for the transmitter and receiver I/O functions are programmable.

The transmitter state-machine reads data-words sequentially from the transmit RAM starting at the stored starting address offset and sends the data LSB first until the bytecount specified is reached. If the transmitter is re-enabled, it will send data starting at that same starting address offset. In order to send different message data, the starting address must be updated or the RAM data re-written. Multiple messages can be initially stored in the transmit RAM and then independently selected by the user by changing the starting address offset for the transmitter.

The receiver state-machine will begin storing received data-words in the next word after the programmed starting address offset. When the message is complete, a status-word which contains the message byte-count and the starting address of the next message will be written to the initial RAM location that was skipped when the message data was written. Unlike the transmitter, the receiver will store subsequent messages in the memory space immediately following the message just received. By reading the statusword of the first message, the address of the status-word for the next message is known. This process can be continued until the address of the message of interest is found. Using the byte count in that message's status-word, a DMA can be setup to quickly read the message data and process accordingly.

Description for Channels 6-7

FIGURE 3

Data is sent and received LSB first using a low start-bit and one or two high stop-bits to separate data words. An optional parity bit following the 32 data bits can be configured to implement odd, or even, parity. The marking (idle) state of the interface is high.

Each channel has two, 2Kx32 FIFO's for storing message data. Each channel has a complete transmitter and receiver allowing full duplex operation. Target Reads and Writes can be used to load or read the FIFO data. In addition, write DMA access to the transmit FIFO, and read DMA access from the receive FIFO is used to move larger data blocks. The FIFO's are cross-connected with an "extra" state-machine to allow loop-back between the transmit and receive FIFO's.

The transmitter state-machine reads data-words sequentially from the transmit FIFO and sends the data LSB first until the FIFO is emptied. If the transmitter state-machine is enabled prior to loading FIFO data, the data will start transmission as soon as it is loaded. The transmission rate is set with PLLC. PLLC is programmed to the receiver reference rate [x16 expected data rate]. The FPGA divides by 16 and uses for

PMC-BISERIAL-III BA23 6&7 BLOCK DIAGRAM

transmission.

When enabled the receiver state-machine will scan for several periods [16x clock] of '1' followed by the start character : '0'. The receiver counts and scans for edges. The data is captured based on a combination of the local sampling clock count and adjustments made due to finding edges within the data. Once the complete word is received the data is loaded into the Rx FIFO, and the data is checked for framing and parity errors.

Parity and Framing errors, if detected, are latched and held in the status register until cleared by SW.

Since the synchronization capability is limited, it is recommended to start the receiver before the transmitter whenever possible.

Various interrupts are supported by the PMC-BiSerial-III BA23. An interrupt can be configured to occur at the end of a received or transmitted message. Receiver parity or framing errors are detected and latched, and can also be configured to cause an interrupt. All interrupts can be individually masked, and a master channel interrupt enable is also provided to disable all interrupts for a channel. The current status of interrupt conditions is available even when the interrupt is disabled making it possible to operate in a polled mode. Most configuration registers support read and write operations for maximum software convenience. All addresses are long word (32-bit) aligned.

Potentially thirty-four differential I/O are available at the front bezel for the serial signals. The drivers and receivers conform to the RS-485 specification. The RS-485 signals are selectively terminated with 100 Ω by software. The termination resistors are in individual packages to allow flexible termination options for custom formats and protocols. Optional pull-up/pull-down resistor packs can also be installed to provide a logic '1' on undriven lines. In this design 4.7 k Ω pull-up/pull-down resistors have been installed on the eight transmit lines to prevent erroneous data when switching directions in half-duplex mode.

The PMC-BiSerial-III BA23 design uses all 34 I/O lines. Sixteen for the UARTs (one in and one out for each of the eight channels), eight for the discrete output signals (one per channel) and ten discrete input signals any one of which can be selected on a per channel basis.

Other custom interfaces are available on request. We will redesign the state machines and create a custom interface protocol that meets your requirements. That protocol will then be offered as a "standard" special order product. Please see our web page for current protocols offered. If none of these fulfill your needs, contact Dynamic Engineering with your custom application.

Since the PMC-BiSerial-III BA23 conforms to the PMC and CMC draft standards, it is guaranteed to be compatibile with multiple PMC Carrier boards. Because the PMC may be mounted on different form factors, while maintaining plug and software compatibility, system prototyping may be done on one PMC Carrier board, while final system implementation uses a different one.

The PMC-BiSerial-III BA23 uses a 10 mm inter-board spacing for the front panel, standoffs, and PMC connectors. The 10 mm height is the "standard" height and will work in most systems with most carriers. If your carrier has non-standard connectors (height) to mate with the PMC-BiSerial-III BA23, please let us know. We may be able to do a special build with a different height connector to compensate.

Theory of Operation

The PMC-BiSerial-III BA23 features an XC3S4000-5 Spartan 3 Xilinx FPGA. The FPGA contains all of the registers, dual-port RAM's, FIFO's. and protocol controlling elements of the PMC-BiSerial-III BA23 design. Only the transceivers, switches and PLL circuit are external to the Xilinx device.

A logic block within the Xilinx controls the PCI interface to the host CPU. PMC-BiSerial-III BA23 requires one wait state for read / write cycles to any address. The wait states refer to the number of clocks after the PCI core decodes the address and control signals and before the "terminate with data" state is reached. Two additional clock periods account for the delay to decode the signals from the PCI bus and to convert the terminate-with-data state into the TRDY signal.

Scatter-gather DMA is supported in this design with the memory page information stored in host RAM as a series of chaining descriptors. Once the physical address of the first chaining descriptor is written to the appropriate DMA pointer register, the interface will read a 16-byte block from this location. The first four bytes comprise a long-word indicating the physical address of the first block of the I/O buffer passed to the read or write call. The next four bytes specify the address offset in the corresponding local RAM that is the target of the data transfer. The next four bytes are a long-word indicating the physical address of the next chaining descriptor along with two flag bits, in bit position 0 and 1. Bit zero is set to a '1' if this descriptor is the last in the chain. Bit one is set to a '1' if the I/O transfer is from the PMC-BiSerial-III BA23 board to host memory, and a '0' if the transfer is from memory to the board. These bits are then replaced with zeros to determine the address of the next descriptor, if there is one.

For transmitting data in channels 0-5 a number of steps must be performed. The PLL must be programmed to supply the I/O clock. The message data must be written to the TX RAM, the starting address of the message stored and the transmitter configuration specified. Finally, the transmitter must be enabled along with the number of bytes to be sent. These steps do not need to be performed in this order, but they must all be done to accomplish the transfer. The least significant byte of the RAM word is sent first then the next significant byte follows until the entire 32-bit word is sent. If a byte count is requested that is not divisible by four, the remaining bytes of the last RAM word are discarded and a subsequent transmission will begin with a new 32-bit word. The transmitter can operate in one of four modes: triggered, where the transmitter waits for a trigger signal to be seen then waits for a programmable delay count to expire before sending the requested message; periodic, where the message is sent immediately and thereafter once for each time a programmable period count is reached; one-shot, where the message is sent immediately only once; and triggered periodic, which initially behaves like the triggered mode, but then repeats the message like the periodic mode. Multiple messages can be pre-written to the transmit RAM and then randomly selected by the user by rewriting the starting I/O address.

In order to receive data with channels 0-5 it is only necessary to configure the PLL, configure and enable the receiver and wait for data to be received. A 16-bit counter is incremented for each data byte received. Once the reception has started, a 32-bit data word will be stored in the receive RAM for each four bytes received. The first byte is stored in the least significant byte of the RAM word and each subsequent byte is stored in the next most significant byte. When the input data line is idle for at least eight bit-periods the reception will terminate. This will cause the received byte count to be written to the byte-count register, the message status-word to be written to RAM at the beginning of the message memory space and the receiver done status bit set. If the last RAM word was not completely filled, the last partial word will be written to the receiver enable bit will be cleared, otherwise the receiver will remain enabled and will wait for the next start-bit to continue receiving data.

Each channel also has a discrete output signal that can be configured to operate in the same four modes as the transmit UART. The signal is a pulse that is determined by the programmable period and duty counts. PLL clock B supplies the timing reference for these counts. The polarity of the signal output and the trigger input, as well as the trigger input for the transmit UART, can be selected by control bits in the transmit control register.

Additionally there are ten RS-485 I/O lines used for discrete input signals used as triggers by the transmit UART or discrete output signals. Each channel can select one of these ten lines without restriction (any or all channels can select the same line). A trigger monitor function counts the duration of the trigger high and low logic levels. Four latched status bits are set if the high or low logic levels exceed minimum or maximum programmable time counts. The counts of the last high and low level pulse are stored and are available to be read. In rev. D these count fields were expanded from sixteen to twenty-two bits and in rev E the ability to detect a steady-state signal was added. PLL clock B is used as a timing reference for these functions.

The baud-rate of the UART interface can be programmed to one of 48 values without changing the PLL clock A frequency. These values represent a four-to-one ratio and each channel's baud-rate can be adjusted independently. Typically, the receive UART uses a 16x clock to decode the asynchronous data-stream since the sender and receiver may be operating at slightly different clock rates. To allow the receiver to operate over a wider frequency range, we divide the bit period into three sections. During the beginning section, if a data transition is seen, the bit-time counter will reset as it assumes this is the beginning of a new data-bit. The middle of the middle section is where the data value is sampled and the shift-register advanced. The end section will again be looking for a data transition, and if seen will reset the bit-time counter and move to the beginning section of the next bit. The count values that mark the limits of these three sections are modified based on the clocks per bit-period setting which is programmable from 16 to 64 clocks per bit.

The values of the transition counts for each bit-width value and the resulting baud-rates (based on a PLL clock A frequency of 160 MHz) are listed below.

The remaining channels (6&7) are populated with FIFO based IO. DMA is supported for these channels with a slightly different model than the lower channels. The FIFO based channels have a fixed secondary address while the RAM based channels have a variable local address. PLL_C is used directly for the RX function and divided by 16 [in HW] for the TX function. Data is 32 bits sent LSB first. D31-0 are as defined on the PCI bus. Programmable options for Parity, Stop bits, active interrupt types are programmable via channel control register. To transmit, program the PLL to the correct frequency, Program the control register with the options you want enabled, write data to the FIFO.

Reading from the upper channels is similar. Set the receive frequency, clear the memory, enable the receiver, wait for the DMA transfer to complete. On the receive side it is recommended to be enabled prior to the transmitter starting up to make sure the receiver starts decoding in the correct place.

If the receiver must be enabled mid-stream the SW will need to work with the HW to toss the improperly decoded data until synchronized. In the case that the first zero detected is really data due to not enabling while the TX side is quiet, the HW will capture data but have a parity or framing error detected [most likely] eventually using the stop time to shift toward alignment. If there are larger gaps it might only take a word or two before the HW is synchronized. On the other hand if data is mainly zero's and the stop/marking time is short it might take 32 words to get into alignment.

Enable the receiver, check for data received, check status and if incorrect purge FIFO without storing. Once data is received without error bits set data can be moved from FIFO to memory. If no parity is in use and only 1 stop bit the error conditions will not be useful, and SW will need to run an algorithm to determine when synchronization has been achieved.

Additional HW filtering can be added if your system can accommodate – so many bit times of '1' before looking for the start bit is an effective way to align with incoming data. This may force the data reception onto a frame boundary depending on how your data is being received. Please contact Dynamic Engineering with your requirements.

Register	Divide	Baud Rate	low	mid	high	end
0x0F	16	10.000 Mbps	2	7	13	15
0x10	17	9.412 Mbps	3	8	13	16
0x11	18	8.889 Mbps	3	8	14	17
0x12	19	8.421 Mbps	3	9	15	18
0x13	20	8.000 Mbps	3	9	16	19
0x14	21	7.619 Mbps	3	10	17	20
0x15	22	7.273 Mbps	3	10	18	21
0x16	23	6.957 Mbps	3	11	19	22
0x17	24	6.667 Mbps	3	11	20	23
0x18	25	6.400 Mbps	4	12	20	24
0x19	26	6.154 Mbps	4	12	21	25
0x1A	27	5.926 Mbps	4	13	22	26
0x1B	28	5.714 Mbps	4	13	23	27
0x1C	29	5.517 Mbps	4	14	24	28
0x1D	30	5.333 Mbps	4	14	25	29
0x1E	31	5.161 Mbps	4	15	26	30
0x1F	32	5.000 Mbps	4	15	27	31
0x20	33	4.848 Mbps	5	16	27	32
0x21	34	4.706 Mbps	5	16	28	33
0x22	35	4.571 Mbps	5	17	29	34
0x23	36	4.444 Mbps	5	17	30	35
0x24	37	4.324 Mbps	5	18	31	36
0x25	38	4.211 Mbps	5	18	32	37
0x26	39	4.103 Mbps	5	19	33	38
0x27	40	4.000 Mbps	5	19	34	39
0x28	41	3.902 Mbps	6	20	34	40
0x29	42	3.810 Mbps	6	20	35	41
0x2A	43	3.721 Mbps	6	21	36	42
0x2B	44	3.636 Mbps	6	21	37	43
0x2C	45	3.556 Mbps	6	22	38	44
0x2D	46	3.478 Mbps	6	22	39	45
0x2E	47	3.404 Mbps	6	23	40	46
0x2F	48	3.333 Mbps	6	23	41	47
0x30	49	3.265 Mbps	7	24	41	48
0x31	50	3.200 Mbps	7	24	42	49
0x32	51	3.137 Mbps	7	25	43	50
0x33	52	3.077 Mbps	7	25	44	51
0x34	53	3.019 Mbps	7	26	45	52
0x35	54	2.963 Mbps	7	26	46	53
0x36	55	2.909 Mbps	7	27	47	54
0x37	56	2.857 Mbps	7	27	48	55
0x38	57	2.807 Mbps	8	28	48	56
0x39	58	2.759 Mbps	8	28	49	57
0x3A	59	2.712 Mbps	8	29	50	58
0x3B	60	2.667 Mbps	8	29	51	59
0x3C	61	2.623 Mbps	8	30	52	60
0x3D	62	2.581 Mbps	8	30	53	61
0x3E	63	2.540 Mbps	8	31	54	62
0x3F	64	2.500 Mbps	8	31	55	63

Programming

Programming the PMC-BiSerial-III BA23 requires only the ability to read and write data from the host. The base address is determined during system configuration of the PCI bus. The base address refers to the first user address for the slot in which the PMC is installed.

Depending on the software environment it may be necessary to set-up the system software with the PMC-BiSerial-III BA23 "registration" data. For example in WindowsNT there is a system registry, which is used to identify the resident hardware.

Before I/O data can be sent or received, the PLL must be programmed to the desired clock configuration. The PLL is connected to the Xilinx by an I²C serial bus. The PLL internal registers are loaded with 40 bytes of data that are derived from a .jed file generated by the CyberClock utility from Cypress semiconductor <u>http://www.dyneng.com/CyberClocks.zip</u>. Routines to program the PLL are included in the driver and UserApp code provided in the engineering kit for the board.

BA23 has an upgrade from BAE9 with HW controlled PLL loading and read-back. The HW interface provides faster more consistent timing to the PLL.

The interrupt service routine should be loaded and the interrupt mask set. The interrupt service routine can be configured to respond to the TX/RX interrupts. After an interrupt is received, new TX data can be written or RX data retrieved. An efficient loop can then be implemented to process the data. New messages can be setup even as the current one is in progress.

If more than one interrupt is enabled, the software needs to read the status to see which source caused the interrupt. The status bits are latched, and are explicitly cleared by writing a one to the corresponding bit. It is a good idea to read the status register and write that value back to clear all the latched interrupt status bits before starting a transfer. This will insure that the interrupt status values read by the interrupt service routine came from the current transfer.

If DMA is to be used it will be necessary to acquire blocks of non-paged memory that are accessible from the PCI bus in which to store the DMA chaining descriptor list entries.

Refer to the Theory of Operation section above and the register definition section below for more information regarding the exact sequencing and interrupt definitions.

The PMC-BiSerial-III BA23 Vendorld = 0xDCBA. The CardId = 0x0053. The device class code is 0x0680 (PCI bridge – other)

Address Map (BAR 0)

Register Name	Offset	Description
BA23 BASE CONTROL	0x0000	Base Control Register
BA23 PLL WRITE	0x0000	Base Control - Bits 16-19 Used for PLL Control
BA23 PLL READ	0x0004	Switch Port Bit 19 Used for pll sdat Input
BA23 USER SWITCH	0x0004	User Switch Read Port and Xilinx Design Revision
	0.0000	
BA23 CHAN 0 CONTROL	0x0010	Channel 0 Control Register
BA23 CHAN 0 STATUS	0x0014	Channel 0 Status Register
BA23 CHAN 0 WR DMA PNTR	0x0018	Channel 0 Write DMA Physical PCI dpr Address
BA23 CHAN 0 TX ADDRESS	0x0018	Channel 0 Write DMA Address Offsets (read only)
BA23 CHAN 0 RD DMA PNTR	0x001C	Channel 0 Read DMA Physical PCI dpr Address
BA23 CHAN 0 RX ADDRESS	0x001C	Channel 0 Read DMA Address Offsets (read only)
BA23 CHAN 0 10 ADDR LAT	0x0020	Channel 0 Latch starting addresses for TX and RX I/O
BA23 CHAN O TRIG CNT LAT	0x0020	Channel 0 Latch Limit Counts for Trigger Signal Input
BA23 CHAN 0 DSCRT OUT LAT	0x0021	Ch 0 Latch Timing Counts for Discrete Output Signal
BA23 CHAN 0 TX CONTROL	0x0020	Channel 0 TX Control Register
	0x0020	Channel 0 PX Control Register
BA23_CHAN_0_TY_LIAPT_LAT	0x0030	Channel 0 Latch Timing Counts for LIAPT Output
	0x0034	Channel 0 TX Start Latch and Pute Count
DA23_CHAN_0_TA_START	0x0030	Chamiler 0 TA Start Latch and Byte Count
BA23_CHAN_U_RA_START	0x003C	Ch 0 RA Start Latch (while) / RA Byte Court (read)
BA23 CHAN 1 CONTROL	0x0040	Channel 1 Control Register
BA23 CHAN 1 STATUS	0x0040	Channel 1 Status Register
BA23 CHAN 1 W/P DMA DNTP	0x0044	Channel 1 Write DMA Physical PCI dnr Address
	0x0040	Channel 1 Write DMA 1 Hysical 1 Clupi Address Channel 1 Write DMA Address Offects (read only)
DA23_CHAN_1_DD_DMA_DNTD	0x0040	Channel 1 Read DMA Reveised BCI day Address
	0x004C	Channel 1 Read DMA Address Offsets (read only)
	0x0040	Channel 1 Read DIVIA Address Offsets (read only)
DA23_CHAN_1_IO_ADDR_LAT	0x0050	Channel 1 Latch Starting addresses for TX and RX I/O
BA23_CHAN_I_TRIG_CNI_LAT	0X0054	Channel T Latch Limit Counts for Trigger Signal Input
BA23_CHAN_I_DSCRI_OUI_LAI	0x0058	Ch T Latch Timing Counts for Discrete Output Signal
BA23_CHAN_1_IX_CONTROL	0X005C	
BA23_CHAN_1_RX_CONTROL	000060	Channel 1 RX Control Register
BA23_CHAN_1_IX_UAR1_LAT	0X0064	Channel 1 Latch Timing Counts for UART Output
BA23_CHAN_1_IX_SIARI	0x0068	Channel 1 IX Start Latch and Byte Count
BA23_CHAN_1_RX_START	0x006C	Ch 1 RX Start Latch (write) / RX Byte Count (read)
BA23 CHAN 2 CONTROL	0×0070	Channel 2 Control Register
BA23 CHAN 2 STATUS	0x0070	Channel 2 Status Register
BA23 CHAN 2 W/P DMA DNTP	0x0074	Channel 2 Write DMA Physical PCI dor Address
	0x0078	Channel 2 Write DMA 1 Hysical 1 Cr upr Address Channel 2 Write DMA Address Officets (read only)
DA23_CHAN_2_TA_ADDRESS	0x0070	Channel 2 While DWA Address Offsels (read only) Channel 2 Dead DMA Develoal DCI day Address
DA23_CHAN_2_RD_DIMA_PINTR	0x007C	Channel 2 Read DMA Address Offsets (read only)
DA23_CHAN_2_RA_ADDRESS	0x007C	Channel 2 Read DIVIA Address Offsets (read only)
BA23_CHAN_Z_IO_ADDR_LAT	0x0080	Channel 2 Latch starting addresses for TX and RX I/O
BA23_CHAN_2_TRIG_CNT_LAT	0X0084	Channel 2 Latch Limit Counts for Trigger Signal Input
BA23_CHAN_2_DSCRI_OUI_LAI	000088	Ch 2 Latch Timing Counts for Discrete Output Signal
BA23_CHAN_2_IX_CONTROL	0X008C	Channel 2 TX Control Register
BA23_CHAN_2_RX_CONTROL	0x0090	Channel 2 RX Control Register
BA23_CHAN_2_IX_UAR1_LA1	0x0094	Channel 2 Latch Timing Counts for UART Output
BA23_CHAN_2_IX_START	0x0098	Channel 2 TX Start Latch and Byte Count
BA23_CHAN_2_RX_START	0x009C	Ch 2 RX Start Latch (write) / RX Byte Count (read)
BA23 CHAN 3 CONTROL	0×0040	Channel 3 Control Register
BA23 CHAN 3 STATUS	0x00A0	Channel 3 Status Register
RA23 CHAN 3 W/D DMA DNITD		Channel 3 Write DMA Develoal DCL dar Address
RA22 CHAN 2 TY ADDEESS		Channel 3 White DWA Fillysical FOI upi Address Channel 3 White DMA Address Offsets (read entry)
		Channel 2 Road DMA Develoal DCI day Address
		Channel 3 Read DIVIA Physical PUT opt Address Channel 2 Read DMA Address Offests (read early)
		Channel 3 Read DiviA Address Offsets (read ONIY)
		Channel 3 Latch Limit Courts for Trigger Circle Limit
DA23_UTAN_3_IKIG_UNI_LAI		Charmer 3 Laten Limit Counts for Trigger Signal Input
IDAZO UHAN O DOUKI UUI LAI	0X00B8	Ch 3 Latch Timing Counts for Discrete Output Signal

BA23 CHAN 3 TX CONTROL	0x00BC	Channel 3 TX Control Register
BA23 CHAN 3 RX CONTROL	0x00C0	Channel 3 RX Control Register
BA23 CHAN 3 TX UART LAT	0x00C4	Channel 3 Latch Timing Counts for UART Output
BA23 CHAN 3 TX START	0x00C8	Channel 3 TX Start Latch and Byte Count
BA23_CHAN_3_RX_START	0x00CC	Ch 3 RX Start Latch (write) / RX Byte Count (read)
BA23 CHAN 4 CONTROL	0x00D0	Channel 4 Control Register
BA23 CHAN 4 STATUS		Channel 4 Status Register
BA23 CHAN 4 WR DMA PNTR		Channel 4 Write DMA Physical PCI dor Address
BA23 CHAN 4 TX ADDRESS		Channel 4 Write DMA Address Offsets (read only)
BA23 CHAN 4 RD DMA PNTR		Channel 4 Read DMA Physical PCI dor Address
BA23 CHAN 4 BX ADDRESS		Channel 4 Read DMA Address Offsets (read only)
BA23 CHAN 4 IO ADDR LAT	0x00E0	Channel 4 Latch starting addresses for TX and RX I/O
BA23 CHAN 4 TRIG CNT LAT	0x00E4	Channel 4 Latch Limit Counts for Trigger Signal Input
BA23 CHAN 4 DSCRT OUT LAT	0x00E8	Ch 4 Latch Timing Counts for Discrete Output Signal
BA23 CHAN 4 TX CONTROL	0x00EC	Channel 4 TX Control Register
BA23 CHAN 4 RX CONTROL	0x00E0	Channel 4 RX Control Register
BA23 CHAN 4 TX UART LAT	0x00F4	Channel 4 Latch Timing Counts for UART Output
BA23 CHAN 4 TX START	0x00F8	Channel 4 TX Start Latch and Byte Count
BA23 CHAN 4 RX START	0x00FC	Ch 4 RX Start Latch (write) / RX Byte Count (read)
BA23_CHAN_5_CONTROL	0x0100	Channel 5 Control Register
BA23_CHAN_5_STATUS	0x0104	Channel 5 Status Register
BA23_CHAN_5_WR_DMA_PNTR	0x0108	Channel 5 Write DMA Physical PCI dpr Address
BA23_CHAN_5_IX_ADDRESS	0x0108	Channel 5 Write DMA Address Offsets (read only)
BA23_CHAN_5_RD_DMA_PNTR	0x010C	Channel 5 Read DMA Physical PCI dpr Address
BA23_CHAN_5_RX_ADDRESS	0x010C	Channel 5 Read DMA Address Offsets (read only)
BA23_CHAN_5_IO_ADDR_LAT	0x0110	Channel 5 Latch starting addresses for 1X and RX I/O
BA23_CHAN_5_TRIG_CNT_LAT	0x0114	Channel 5 Latch Limit Counts for Trigger Signal Input
	0x0110	Channel 5 TX Centrel Register
BA23_CHAN_5_BY_CONTROL	0x0120	Channel 5 TX Control Register
BA23_CHAN_5_TY_LIADT_LAT	0x0120	Channel 5 Latch Timing Counts for LIAPT Output
BA23_CHAN_5_TX_CART_LAT	0x0124	Channel 5 TX Start Latch and Byte Count
BA23 CHAN 5 BX START	0x0120	Ch 5 RX Start Latch (write) / RX Byte Count (read)
	0.0120	on o fox otali Eaten (whic) / fox Byte oount (read)
BA23_CHAN_6_CONTROL	0x0130	Channel 6 Control Register
BA23_CHAN_6_STATUS	0x0134	Channel 6 Status Register
BA23_CHAN_6_WR_DMA_PNTR	0x0138	Channel 6 Write DMA Physical PCI Address
BA23_CHAN_6_TX_FIFO_CNT	0x0138	Channel 6 TX FIFO Count (read only)
BA23_CHAN_6_RD_DMA_PNTR	0x013C	Channel 6 Read DMA Physical PCI Address
BA23_CHAN_6_RX_FIFO_CNT	0x013C	Channel 6 RX FIFO + Pipeline Count (read only)
BA23_CHAN_6_FIFO	0x0140	Channel 6 Target Access R/W FIFO port
BA23_CHAN_6_TX_AMT_LVL	0x0144	Channel 6 TX FIFO AMT Programmed Level
BA23_CHAN_6_RX_AFL_LVL	0x0148	Channel 6 RX FIFO Almost Full Programmed Level
BA23 CHAN 7 CONTROL	0x0160	Channel 7 Control Register
BA23 CHAN 7 STATUS	0x0164	Channel 7 Status Register
BA23_CHAN_7_WR DMA PNTR	0x0168	Channel 7 Write DMA Physical PCI Address
BA23_CHAN_7_TX_FIFO_CNT	0x0168	Channel 7 TX FIFO Count (read only)
BA23_CHAN_7_RD_DMA_PNTR	0x016C	Channel 7 Read DMA Physical PCI Address
BA23_CHAN_7_RX_FIFO_CNT	0x016C	Channel 7 RX FIFO + Pipeline Count (read only)
BA23_CHAN_7_FIFO	0x0170	Channel 7 Target Access R/W FIFO port
BA23_CHAN_7_TX_AMT_LVL	0x0174	Channel 7 TX FIFO AMT Programmed Level
BA23_CHAN_7_RX_AFL_LVL	0x0178	Channel 7 RX FIFO Almost Full Programmed Level

FIGURE 4

PMC-BISERIAL-III BA23 BAR0 ADDRESS MAP

Address Map (BAR 1)

Memory Name	Memory Range	Description
BA23_CHAN_0_TX_RAM	0x00000-0x03FFC	Channel 0 Transmit RAM
BA23_CHAN_0_RX_RAM	0x04000-0X05FFC	Channel 0 Receive RAM
BA23_CHAN_1_TX_RAM	0x08000-0x0BFFC	Channel 1 Transmit RAM
BA23_CHAN_1_RX_RAM	0x0C000-0X0DFFC	Channel 1 Receive RAM
BA23_CHAN_2_TX_RAM	0x10000-0x13FFC	Channel 2 Transmit RAM
BA23_CHAN_2_RX_RAM	0x14000-0X15FFC	Channel 2 Receive RAM
BA23_CHAN_3_TX_RAM	0x18000-0x1BFFC	Channel 3 Transmit RAM
BA23_CHAN_3_RX_RAM	0x1C000-0X1DFFC	Channel 3 Receive RAM
BA23_CHAN_4_TX_RAM	0x20000-0x23FFC	Channel 4 Transmit RAM
BA23_CHAN_4_RX_RAM	0x24000-0X25FFC	Channel 4 Receive RAM
BA23_CHAN_5_TX_RAM	0x28000-0x2BFFC	Channel 5 Transmit RAM
BA23_CHAN_5_RX_RAM	0x2C000-0X2DFFC	Channel 5 Receive RAM

FIGURE 5 PMC-BISERIAL-III BA23 BAR1 MEMORY BLOCK ADDRESS MAP

Register Definitions

BA23_BASE_CONTROL

[0x0000] Base Control (read/write)

Base Control		
Data Bit	Description	
31-21	Spare	
20	Master Int En	
18	Spare	
17	CirPli	
16	PIIProgEn	
15-10	Spare	
9-0	Termination Enables for Discrete Inputs	

FIGURE 6

PMC-BISERIAL-III BA23 BASE CONTROL

All bits are active high and are reset on power-up or reset command. This is the base control register for the BA23. The features common to all channels are controlled from this port. Unused bits are reserved for additional new features. Unused bits should be programmed '0' to allow for future commonality.

<u>Termination Enables for Discrete Inputs</u>: When one of these bits is set to a one, the corresponding discrete input line termination is enabled. I/O lines 24 - 33 correspond to discrete inputs 0 - 9 respectively.

PIIProgEn: When this bit is set to a one, the state-machine used to program the PLL is enabled to operate.

CIrPII: when set the PLL and associated memories are cleared. Must be returned to cleared for normal operation.

The PLL is programmed with the output file generated by the Cypress PLL programming tool. [CY3672 R3.01 Programming Kit or CyberClocks R3.20.00 Cypress may update the revision from time to time.] The .JED file is used by the Dynamic Driver to program the PLL. Programming the PLL is fairly involved and beyond the scope of this manual. For clients writing their own drivers it is suggested to get the Engineering Kit for this board including software, and to use the translation and programming files ported to your environment. This procedure will save you a lot of time. For those who want to do it themselves the Cypress PLL in use is the 22393. The output file from the Cypress tool can be passed directly to the Dynamic Driver [Linux or Windows] and used to program the PLL without user intervention.

The reference frequency for the PLL is 20 MHz. Standard frequencies: PLLA = 160,

PLLB = 10, PLLC = 76.8 set with the BA23_160_10_76p8.jed file included with the driver.

Master Int Enable when set '1' allows interrupts to be generated from any channel. When cleared [default] no interrupts can be generated. Please note: Channel interrupt masks must also be enabled for interrupts to be generated.

BA23_USER_SWITCH [0x0004] User Switch Port (read only)

Dip-Switch Port		
Data Bit	Description	
31-24	Channel Interrupt Status	
23-16	Spare	
15-8	Xilinx Design Revision Number	
7-0	Switch Setting	

FIGURE 7

PMC-BISERIAL-III BA23 USER SWITCH PORT

<u>Switch Setting</u>: The user switch is read through this port. The bits are read as the lowest byte in the port. Access the read-only port as a long word and mask off the undefined bits. The dip-switch positions are defined in the silkscreen. For example the switch figure below indicates a 0x12.

<u>Xilinx Design Revision Number</u>: The value of the second byte of this port is the rev. number of the Xilinx design (currently 0x03 - rev. 3.)

<u>Channel Interrupt Status</u>: These eight bits represent the state of the eight channel interrupts. When a one is read, it indicates that the respective channel's interrupt is active. A zero indicates that the channel's interrupt is not active.

BA23_CHAN_0-5_CONTROL

Channel Control		
Description		
Spare		
Auto Direction Switch Enable		
Full-Duplex Enable		
Trigger Monitor Enable		
Read DMA Interrupt Enable		
Write DMA Interrupt Enable		
Force Interrupt		
Master Interrupt Enable		
Discrete Input Select		

[0x0010, 40, 70, A0, D0, 100] Channel Control (read/write)

FIGURE 8

PMC-BISERIAL-III BA23 CHANNEL CONTROL

<u>Discrete Input Select</u>: This field selects one of the ten discrete input signals to be used to trigger the UART transmission and/or the discrete output signal. Values from 0 to 9 are accepted. There are no restrictions on which signal can be used and any or all channels can share the same input line.

<u>Master Interrupt Enable</u>: When this bit is set to a one, all enabled interrupts (except the DMA interrupts) will be gated through to the PCI host; when this bit is a zero, the interrupts can be used for status without interrupting the host.

<u>Force Interrupt</u>: When this bit is set to a one, a system interrupt will occur provided the master interrupt enable is set. This is useful for interrupt testing.

<u>Write/Read DMA Interrupt Enable</u>: These two bits, when set to one, enable the interrupts for DMA writes and reads respectively. The DMA interrupts are not affected by the Master Interrupt Enable.

<u>Trigger Monitor Enable</u>: When this bit is set to a one, the trigger monitor function is enabled. This circuit, using PLL clock B for a timing reference, counts the duration of the high and low levels of the selected trigger input signal. There are also four latched status bits that report counts that are above or below programmable counts for each level. When this bit is a zero, the trigger monitor is disabled.

<u>Full-Duplex Enable</u>: When this bit is set to a one, the respective channel I/O will operate in full-duplex mode. This means the transmit and receive data are transferred on separate I/O lines and these transfers can occur simultaneously. When this bit is zero, the I/O will operate in half-duplex mode. This means the transmit and receive data are transferred on the same I/O line (the full-duplex transmit I/O line) and the transfer

direction alternates with the transmitter in a high impedance state when the receiver is active.

<u>Auto Direction Switch Enable</u>: When this bit is set to a one, and the channel I/O is operating in half-duplex mode, the I/O interface will automatically change directions when the current message completes provided transmit and receive interfaces are both enabled. When this bit is zero, the I/O interface will not switch directions unless explicitly commanded to do so.

BA23_CHAN_0-5_STATUS

[0x0014, 44, 74, A4, D4, 104] Channel Status Read/Clear Latch Write

Channel Status		
Data Bit	Description	
31	Channel Interrupt Active	
30-28	Spare	
27	User Interrupt Condition Occurred	
26-18	Spare	
17	Latch Trigger Monitor Counts (write only)	
16	Clear Trigger Monitor Counts (write only)	
15	Trigger Low-Level Under Limit	
14	Trigger Low-Level Over Limit	
13	Trigger High-Level Under Limit	
12	Trigger High-Level Over Limit	
10-11	Spare	
9	Read DMA Idle	
8	Write DMA Idle	
7	Read DMA Interrupt Occurred	
6	Write DMA Interrupt Occurred	
5	Read DMA Error Occurred	
4	Write DMA Error Occurred	
3	Receive Framing Error Occurred	
2	Receive Parity Error Occurred	
1	Receive Done Interrupt Occurred	
0	Transmit Done Interrupt Occurred	

FIGURE 9

PMC-BISERIAL-III BA23 CHANNEL STATUS

<u>Transmit Done Interrupt Occurred</u>: When a one is read, it indicates that the transmit state-machine has completed a message. A zero indicates that a transmit message has not been completed. This bit is latched and can be cleared by writing back to the Status register with a one in this bit position.

<u>Receive Done Interrupt Occurred</u>: When a one is read, it indicates that the receive state-machine has received at least one complete message. At least one byte must have been received and then the receive data line must be idle for at least eight bit-periods for a message to be considered completed. A zero indicates that a complete message has not been received. This bit is latched and can be cleared by writing back to the Status register with a one in this bit position.

<u>Receive Parity Error Occurred</u>: When a one is read, it indicates that a parity error was detected in a received data-byte. A zero indicates that no parity error was detected. This bit is latched and can be cleared by writing back to the Status register with a one in this bit position.

<u>Receive Framing Error Occurred</u>: When a one is read, it indicates that a framing error has been detected in the receive data stream. This is caused by an incorrect number or polarity of stop bits. A zero indicates that no framing error has occurred. This bit is latched and can be cleared by writing back to the Status register with a one in this bit position.

<u>Write/Read DMA Error Occurred</u>: When a one is read, a write or read DMA error has been detected. This will occur if there is a target or master abort or if the direction bit in the initial descriptor pointer address or next pointer of one of the chaining descriptors is incorrect. A zero indicates that no write or read DMA error has occurred. These bits are latched and can be cleared by writing back to the Status register with a one in the appropriate bit position.

<u>Write/Read DMA Interrupt Occurred</u>: When a one is read, a write/read DMA interrupt is latched. This indicates that the scatter-gather list for the current write or read DMA has completed, but the associated interrupt has yet to be processed. A zero indicates that no write or read DMA interrupt is pending.

<u>Write/Read DMA Idle</u>: When a one is read, a write/read DMA interrupt is latched. This indicates that the scatter-gather list for the current write or read DMA has completed, but the associated interrupt has yet to be processed. A zero indicates that no write or read DMA interrupt is pending.

<u>Trigger High-Level Over Limit</u>: When a one is read, the duration of the high portion of the trigger input signal has exceeded the appropriate programmed count value. A zero indicates that this condition has not occurred since the latch was last cleared.

<u>Trigger High-Level Under Limit</u>: When a one is read, the duration of the high portion of the trigger input signal was less than the appropriate programmed count value. A zero indicates that this condition has not occurred since the latch was last cleared.

<u>Trigger Low-Level Over Limit</u>: When a one is read, the duration of the low portion of the trigger input signal has exceeded the appropriate programmed count value. A zero indicates that this condition has not occurred since the latch was last cleared.

<u>Trigger Low-Level Under Limit</u>: When a one is read, the duration of the low portion of the trigger input signal was less than the appropriate programmed count value. A zero indicates that this condition has not occurred since the latch was last cleared.

<u>Clear Trigger Monitor Counts</u>: When a one is written to this bit, the trigger monitor time counters that report the duration of the high and low levels of the trigger input signal are stopped and the counts cleared. This is required to prepare for detection of a constant level signal on the trigger input.

Latch Trigger Monitor Counts: When a one is written to this bit, the trigger monitor high and low level time counter values are entered into the latches that report the duration of the respective levels. If these counts are both zero it means that no rising or falling edge has occurred since the counts were cleared. This fact, plus the signal level read from the trigger monitor high or low count register, indicates that a constant level signal of the polarity read is driving the trigger signal input.

<u>User Interrupt Condition Occurred</u>: When a one is read, it indicates that an enabled user interrupt condition has occurred. These conditions include the TX and RX done interrupts as well as the RX parity and framing error interrupts. Also the Force Interrupt bit will cause this bit to be asserted. A system interrupt will occur if the Master Interrupt Enable is set. A zero indicates that no enabled user interrupt condition is active.

<u>Channel Interrupt Active</u>: When a one is read, it indicates that a system interrupt is asserted caused by an enabled channel interrupt condition. A zero indicates that no system interrupt is pending from an enabled channel interrupt condition.

BA23_CHAN_0-5_WR_DMA_PNTR

DMA Pointer Address		
Data Bit	Description	
31-0	First Chaining Descriptor Physical Address	

[0x0018, 48, 78, A8, D8, 108] Write DMA Pointer (write only)

FIGURE 10

PMC-BISERIAL-III BA23 WRITE DMA POINTER

This write-only port is used to initiate a scatter-gather write DMA. When the physical address of the first chaining descriptor is written to this port, the DMA engine reads four successive long words beginning at that address. The first is the physical address of the first memory block of the DMA buffer containing the data to write to the device, the second is the local address that the data is to be written to, the third is the length in bytes of the block, and the fourth is the physical address of the next chaining descriptor in the list of buffer memory blocks. This process continues until the end-of-chain bit in one of the next pointer values is set, indicating that it is the last descriptor in the list.

Note: Writing a zero to this port will abort a write DMA in progress.

BA23_CHAN_0-5_TX_ADDRESS

[0x0018, 48, 78, A8, D8, 108] TX RAM Address Offsets (read only)

TX RAM Address Offsets		
Data Bit	Description	
31-28	Spare	
27-16	TX DMA RAM Address Offset	
15-12	Spare	
11-0	TX I/O RAM Address Offset	

FIGURE 11 PMC-BISERIAL-III BA23 TX RAM ADDRESS OFFSETS

TX I/O RAM Address Offset: This is the long-word address offset of the next word to be read from the transmit RAM and sent by the transmit UART.

<u>TX DMA RAM Address Offset</u>: This is the long-word address offset in the transmit RAM where the next write DMA will start storing data.

BA23_CHAN_0-5_RD_DMA_PNTR

DMA Pointer Address		
Data Bit	Description	
31-0	First Chaining Descriptor Physical Address	

[0x001C, 4C, 7C, AC, DC, 10C] Read DMA Pointer (write only)

FIGURE 12

PMC-BISERIAL-III BA23 READ DMA POINTER

This write-only port is used to initiate a scatter-gather read DMA. When the physical address of the first chaining descriptor is written to this port, the DMA engine reads four successive long words beginning at that address. The first is the physical address of the first memory block of the DMA buffer where the data from the device will be stored, the second is the local address that the data is read from, the third is the length in bytes of the block, and the fourth is the physical address of the next chaining descriptor in the list of buffer memory blocks. This process continues until the end-of-chain bit in one of the next pointer values is set, indicating that it is the last chaining descriptor in the list.

Note: Writing a zero to this port will abort a read DMA in progress.

BA23_CHAN_0-5_RX_ADDRESS

[0x001C, 4C, 7C, AC, DC, 10C] RX RAM Address Offsets (read only)

RX RAM Address Offsets		
Data Bit	Description	
31-27	Spare	
26-16	RX DMA RAM Address Offset	
15-11	Spare	
10-0	RX I/O RAM Address Offset	

FIGURE 13 PMC-BISERIAL-III BA23 RX RAM ADDRESS OFFSETS

<u>RX I/O RAM Address Offset</u>: This is the long-word address offset of the next word to be written to the receive RAM after being received by the receive UART.

<u>RX DMA RAM Address Offset</u>: This is the long-word address offset in the receive RAM where the next read DMA will start reading data.

BA23_CHAN_0-5_IO_ADDR_LAT

RX and TX I/O Start Address		
Data Bit	Description	
31-18	Spare	
17	TX Address Latch Strobe	
16	RX Address Latch Strobe	
15-0	Address to Latch	

[0x0020, 50, 80, B0, E0, 110] TX / RX Latch I/O Start Address (write only)

FIGURE 14 PMC-BISERIAL-III BA23 RX/TX I/O START ADDRESS

<u>Address to Latch</u>: This 16-bit field specifies the starting long-word address in the transmit or receive RAM where the next I/O operation will start.

<u>RX Address Latch Strobe</u>: When this bit is set to a one, the address value will be loaded into the receive RAM address counter in the receive state-machine. The first location of each message block will contain a status word for that message. Each data-word received will be written to the next RAM location until the message completes. Additional messages will be written to successive memory locations in the same manner. The receive RAM has eleven valid address bits, the upper five bits are ignored.

<u>TX Address Latch Strobe</u>: When this bit is set to a one, the address value will be latched into the transmit address latch of the transmit state-machine. Each message sent loads the latched address into the transmit RAM address counter and the message begins at that address. To send different message data, the latched address must be re-written or the RAM data modified. The transmit RAM has twelve valid address bits, the upper four bits are ignored.

BA23_CHAN_0-5_TRIG_CNT_LAT

Trigger Monitor Counts		
Data Bit	Description	
31-26	Spare	
25	Low-Level Minimum Count Latch Strobe	
24	Low-Level Maximum Count Latch Strobe	
23	High-Level Minimum Count Latch Strobe	
22	High-Level Maximum Count Latch Strobe	
21-0	Count Value	

[0x0024, 54, 84, B4, E4, 114] Trigger Monitor Counts Latch (write only)

FIGURE 15 PMC-BISERIAL-III BA23 TRIGGER MONITOR COUNTS

<u>Count Value</u>: This 22-bit field determines the value of the appropriate limit count that will be latched into the trigger monitor circuit. These counts are used for comparison to actual counts to set latched status bits characterizing the trigger input signal.

<u>High-Level Maximum Count Latch Strobe</u>: When this bit is set to a one, the value of the trigger signal high-level maximum count is latched into the trigger monitor circuit.

<u>High-Level Minimum Count Latch Strobe</u>: When this bit is set to a one, the value of the trigger signal high-level minimum count is latched into the trigger monitor circuit.

<u>Low-Level Maximum Count Latch Strobe</u>: When this bit is set to a one, the value of the trigger signal low-level maximum count is latched into the trigger monitor circuit.

<u>Low-Level Minimum Count Latch Strobe</u>: When this bit is set to a one, the value of the trigger signal low-level maximum count is latched into the trigger monitor circuit.

BA23_CHAN_0-5_TRIG_HICNT_OUT

Trigger Monitor Counts		
Data Bit	Description	
31-24	Spare	
23	Current Signal Level	
22	Spare	
21-0	High-Level Count Value	

[0x0024, 54, 84, B4, E4, 114] Trigger Monitor On Counts (read only)

FIGURE 16 PMC-BISERIAL-III BA23 TRIGGER MONITOR ON COUNTS

<u>High-Level Count Value</u>: This 22-bit field reports the number of PLL clock B periods that the last trigger pulse remained at a high level.

<u>Current Signal Level</u>: Reports the level (high or low) of the trigger input signal at the time this register was read.

BA23_CHAN_0-5_TRIG_LOCNT_OUT

[0x0028, 58, 88, B8, E8, 118] Trigger Monitor Off Counts (read only)

Trigger Monitor Counts		
Data Bit	Description	
31-24	Spare	
23	Current Signal Level	
22	Spare	
21-0	Low-Level Count Value	

FIGURE 17 PMC-BISERIAL-III BA23 TRIGGER MONITOR OFF COUNTS

<u>Low-Level Count Value</u>: This 22-bit field reports the number of PLL clock B periods that the last trigger pulse remained at a low level.

<u>Current Signal Level</u>: Reports the level (high or low) of the trigger input signal at the time this register was read.

BA23_CHAN_0-5_DSCRT_OUT_LAT

Discrete Output Signal Parameter		
Data Bit	Description	
31-25	Spare	
24	Duty-Cycle Latch Strobe	
23	Period Count Latch Strobe	
22	Delay Count Latch Strobe	
21-0	Count Value	

[0x0028, 58, 88, B8, E8, 118] Discrete Output Parameters (write only)

FIGURE 18 PMC-BISERIAL-III BA23 DISCRETE OUTPUT PARAMETERS

<u>Count Value</u>: This 22-bit field specifies the number of PLL clock B periods to use for various discrete output signal parameters.

<u>Delay Count Latch Strobe</u>: When this bit is set to a one, the value for the delay count is latched. When operating in a triggered mode, after the trigger is seen, the circuit waits for this count to be reached and then asserts the discrete output signal.

<u>Period Count Latch Strobe</u>: When this bit is set to a one, the value of the period count is latched. In periodic mode, this determines the time between successive assertions of the discrete output signal.

<u>Duty-Cycle Latch Strobe</u>: When this bit is set to a one, the value of the duty-cycle count is latched. This determines the length of the active pulse of the discrete output signal. If this value exceeds the period count, a 50% duty cycle based on the period is used.

BA23_CHAN_0-5_TX_CONTROL

Transmitter Control			
Data Bit	Description		
31-16	Spare		
15	Level Output Signal Enable		
14-13	Discrete Output Mode Select		
12	Discrete Output Signal Polarity		
11	Discrete Output Trigger Polarity		
10	Discrete Output Signal Enable		
9-8	Transmit UART Mode Select		
7	Transmit Parity Level Select		
6	Transmit Odd Parity Select		
5	Transmit Parity Enable		
4	Transmit Two Stop-Bits Select		
3	Transmit Start Clear Enable		
2	Transmit UART Trigger Polarity		
1	Transmit Done Interrupt Enable		
0	Transmitter Enabled (read only)		

[0x002C, 5C, 8C, BC, EC, 11C] Transmitter Control (read/write)

FIGURE 19

PMC-BISERIAL-III BA23 TX CONTROL

<u>Transmitter Enabled</u>: When a one is read, the transmit state-machine is enabled; when a zero is read, the state-machine is disabled and the output will be tri-stated.

<u>Transmitter Done Interrupt Enable</u>: When this bit is set to a one, the transmitter done interrupt is enabled. The interrupt will occur when the transmit state-machine completes a message. This will occur when the requested byte count has been reached. At least one byte must be sent to constitute a transmitted message.

<u>Transmit UART Trigger Polarity</u>: When this bit is set to a one, the trigger is set to activehigh. When this bit is zero, the trigger is set to active low.

<u>Transmit Start Clear Enable</u>: When this bit is set to a one, the TX start latch will be cleared when the current transmit message completes. When this bit is zero, the TX start latch will remain set until the transmitter is disabled.

<u>Transmit Two Stop-Bits Select</u>: When this bit is set to a one, the transmitter will insert two stop-bits to terminate a data-byte. When this bit is zero, only one stop-bit will be inserted

<u>Transmit Parity Enable</u>: When this bit is set to a one, a parity bit will be added after the eight data-bits and before the stop-bit(s). When this bit is zero, no parity bit will be

added.

<u>Transmit Odd Parity Select</u>: When this bit is set to a one, odd parity will be used to determine the value of the parity bit, provided the Parity Level Select bit is a zero. When this bit is zero, even parity will be used.

<u>Transmit Parity Level Select</u>: When this bit is set to a one, the parity bit will be equal to the value of the Odd Parity Select bit. When this bit is zero, the polarity of the parity bit will be calculated using odd or even parity as determined by the Odd Parity Select bit.

<u>Transmit UART Mode Select</u>: This two-bit field specifies the operational mode of the transmit UART as follows:

"00" = Triggered – When enabled the UART waits for the trigger and then the delay; "01" = Periodic – When enabled the UART message is repeated based on the period; "10" = One-shot – When enabled the UART immediately sends the message once only; "11" = Triggered Periodic – The UART operates as in triggered mode, but sends the message repeatedly as in periodic mode.

<u>Discrete Output Signal Enable</u>: When this bit is set to a one, the discrete output signal is enabled. When this bit is zero, the discrete output signal is disabled.

<u>Discrete Output Trigger Polarity</u>: When this bit is set to a one, the discrete output signal trigger is active when it goes high. When this bit is zero, the discrete output signal trigger is active when it goes low.

<u>Discrete Output Signal Polarity:</u> When this bit is set to a one, the discrete output signal is low in the idle state and goes high when active. When this bit is zero, the discrete output signal is high in the idle state and goes low when active.

<u>Discrete Output Mode Select</u>: This two-bit field specifies the operational mode of the discrete output signal as follows:

"00" = Triggered – The signal is idle until the trigger is seen and then the delay expires; "01" = Periodic – The signal is repeated based on the duty-cycle and period;

"10" = One-shot – The signal immediately outputs one complete cycle, then stays idle; "11" = Triggered Periodic – The signal is idle until the trigger is seen and the delay is satisfied; then the signal repeats based on the duty-cycle and period.

<u>Level Output Signal Enable</u>: When this bit is set to a one, the discrete output signal will output a steady-state signal. The polarity is controlled by the Discrete Output Signal Polarity bit. The output will be low when the polarity bit is high and high when the polarity bit is low. When this bit is zero, the steady-state output function is disabled.

BA23_CHAN_0-5_RX_CONTROL

Receiver Control		
Data Bit	Description	
31-10	Spare	
9	Receive Parity Level Select	
8	Receive Odd Parity Select	
7	Receive Parity Enable	
6	Receive Two Stop-Bits Select	
5	Receiver Termination Enable	
4	Receive Start Clear Enable	
3	Framing Error Interrupt Enable	
2	Parity Error Interrupt Enable	
1	Receive Done Interrupt Enable	
0	Receiver Enabled (read only)	

[0x0030, 60, 90, C0, F0, 120] Receiver Control (read/write)

FIGURE 20

PMC-BISERIAL-III BA23 RX CONTROL

<u>Receiver Enabled</u>: When a one is read, the Receive state-machine is enabled and either a message is in progress or it is waiting for a message to begin; when a zero is read, the state-machine is disabled.

<u>Receiver Done Interrupt Enable</u>: When this bit is a one the Receiver interrupt is enabled. The interrupt will occur when the Receive state-machine receives a complete message. This will occur when the at least one byte has been received and then the receive data line is idle for at least eight bit-periods.

<u>Parity Error Interrupt Enable</u>: When this bit is a one the receiver parity error interrupt is enabled. This interrupt will occur when the received parity bit did not match the calculated parity for one or more bytes received. When this bit is zero, the received parity error interrupt is disabled.

<u>Framing Error Interrupt Enable</u>: When this bit is a one the receiver framing error interrupt is enabled. This interrupt will occur when the stop bit(s) polarity or number do not match the expected stop bit(s). When this bit is zero, the framing error interrupt is disabled.

<u>Receive Start Clear Enable</u>: When this bit is set to a one, the RX start latch will be cleared when the current Receive message completes. When this bit is zero, the RX start latch will remain set until the Receiver is disabled.

<u>Receiver Termination Enable</u>: When this bit is set to a one, the 100 Ω receiver I/O shunt termination is enabled when the I/O line is operating in full-duplex mode or in half-duplex mode with the transmitter disabled. This termination is used to reduce noise on the I/O line. If more than one receiver is being driven by the same source, be careful not to enable more than one termination as this could excessively attenuate the signal. When this bit is zero, the termination is disabled.

<u>Receive Two Stop-Bits Select</u>: When this bit is set to a one, the Receiver will expect two stop-bits to terminate a data-byte. When this bit is zero, only one stop-bit will be expected. If the expected stop bits are not received as ones, a framing error will be latched.

<u>Receive Parity Enable</u>: When this bit is set to a one, a parity bit will be expected after the eight data-bits and before the stop-bit(s). When this bit is zero, no parity bit will be expected. If parity is enabled and the parity bit does not match the calculated value, a parity error will be latched.

<u>Receive Odd Parity Select</u>: When this bit is set to a one, odd parity will be used to determine the polarity of the expected parity bit, provided the Parity Level Select bit is a zero. When this bit is zero, even parity will be used.

<u>Receive Parity Level Select</u>: When this bit is set to a one, the expected parity bit will be equal to the value of the Odd Parity Select bit. When this bit is zero, the polarity of the expected parity bit will be calculated using odd or even parity as determined by the Odd Parity Select bit.

BA23_CHAN_0-5_TX_UART_LATCH

TX UART Latch		
Data Bit	Description	
31-19	Spare	
18	Bit-Width Latch Strobe	
17	TX UART Period Latch Strobe	
16	TX UART Delay Latch Strobe	
15-0	Delay/Period Count	
5-0	Bit-Width	

[0x0034, 64, 94, C4, F4, 124] TX UART Parameters (write only)

FIGURE 21

PMC-BISERIAL-III BA23 TX UART PARAMETERS

<u>Bit-Width</u>: This 6-bit field will be latched when the Bit-Width Latch Strobe is asserted. The baud-rate of the UART interface is determined by the latched value and the I/O clock frequency. The valid range of this value is 0x0F - 0x3F, which corresponds to baud rates of 10 Mbps – 2.5 Mbps with a 160 MHz I/O clock. The bit-width field uses the lower six bits of the same field as the delay/period.

<u>Delay/Period Count</u>: This 16-bit field will be latched into the respective latch when either the TX UART Delay Latch Strobe or TX UART Period Latch Strobe is asserted. In triggered modes the delay field specifies the number of I/O bit-periods to wait after the trigger is seen before the transmission starts. In periodic modes the period field specifies the time between the start of subsequent messages. If the message duration exceeds the period, the next message will begin immediately.

<u>TX UART Delay Latch Strobe</u>: When this bit is set to a one, the value for the delay count is latched. When operating in a triggered mode, after the trigger is seen, the transmit state-machine waits for this count to be reached and then sends the transmit UART message.

<u>TX UART Period Latch Strobe</u>: When this bit is set to a one, the value for the period count is latched. In periodic mode, the transmit UART message is repeated at the rate determined by this count. If the message is longer than the count, the message repeats immediately.

<u>Bit-Width Latch Strobe</u>: When this bit is set to a one, the transmit bit-width value is latched. This value can be 0x0F - 0x3F, which results in a bit-width of 16 - 64 I/O clock periods.

BA23_CHAN_0-5_TX_START_LATCH

[0x0038, 68, 98, C8, F8, 128] TX start (write only)

TX Start Latch		
Data Bit	Description	
31-17	Spare	
16-1	TX Byte Count	
0	TX Start	

FIGURE 22

PMC-BISERIAL-III BA23 TX START LATCH

<u>TX Start</u>: When this bit is set to a one, the transmit state-machine will be enabled. When this bit is zero the state-machine will be disabled. The value of the TX start bit is read from the TX_CONTROL register bit 0.

<u>TX Byte Count</u>: This 16-bit field determines the number of bytes to send when the transmitter is enabled.

BA23_CHAN_0-5_RX_START_LATCH

[0x003C, 6C, 9C, CC, FC, 12C] RX start (write only)

RX Start Latch		
Data Bit	Description	
31-1	Spare	
0	RX Start	

FIGURE 23

PMC-BISERIAL-III BA23 RX START LATCH

<u>RX Start</u>: When this bit is set to a one, the receive state-machine will be enabled. When this bit is zero the state-machine will be disabled. The value of the RX start bit is read from the RX_CONTROL register bit 0.

BA23_CHAN_0-5_RX_BYTE_COUNT

RX Byte Count		
Data Bit 31-16 15-0	Description Spare RX Bytes Received	

[0x003C, 6C, 9C, CC, FC, 12C] RX byte count (read only)

FIGURE 24

PMC-BISERIAL-III BA23 RX BYTE COUNT

<u>RX Bytes Received</u>: This field represents the number of bytes received in the last message. The value will remain valid until the end of a subsequent message. The Receive Done Status/Interrupt can be used to indicate when this value has been updated.

BA23_RX_MESSAGE_STATUS_WORD

First 32-bit word of each received message stored

RX Message Status Word		
Data Bit	Description	
31-16	RX Message Byte-Count	
15-11	Spare	
10-0	Start of Next Message Address Offset	

FIGURE 25

PMC-BISERIAL-III BA23 RX MESSAGE STATUS WORD

Start of Next Message Address Offset: This value represents the RX RAM address offset of the Status Word that is or will be stored at the start of the next message.

RX Message Byte-Count: This value represents the number of bytes that were in the current received message.

BA23 Channel 6 & 7 Bit Maps

Notes:

The offsets shown are relative to the channel base address, not the card base address.

[]]]]]]]]]]]]]]]]]]]	
	Channel Control Register
Data Bit 31-25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3	Channel Control Register Description Spare RxTermEn RxOddEven RxStop2 RxParEn RxStart RxOflInt TxOddEven TxStop2 TxParEn Spare TxFifoAmtInt TxStart RxFifoAflIntEnLat RxFifoAflIntEnLat RxFifoAffIntEnLvl spare OutUrgent InUrgent Read DMA Interrupt Enable Write DMA Interrupt Enable Force Interrupt Channel Interrupt Enable
1 0	Receive FIFO Reset Transmit FIFO Reset

BA22_CHAN_6-7_CNTRL

[0x0] Channel Control Register (read/write)

FIGURE 26 PMC-BISERIAL-III BA23 CHANNEL CONTROL REGISTER

<u>FIFO Transmitter/Receiver Reset</u>: When set to a one, the transmit and/or receive FIFOs will be reset. When these bits are zero, normal FIFO operation is enabled. In addition the Transmit and Receive State Machines are also reset.

<u>Write/Read DMA Interrupt Enable</u>: These two bits, when set to one, enable the interrupts for DMA writes and reads respectively.

<u>Channel Interrupt Enable</u>: When this bit is set to a one, all enabled interrupts (except the DMA interrupts) will be gated through to the PCI interface level of the design; when this bit is a zero, the interrupts can be used for status without interrupting the host. The channel interrupt enable is for the channel level interrupt sources only.

<u>Force Interrupt</u>: When this bit is set to a one, a system interrupt will occur provided the Channel Interrupt enable is set. This is useful for interrupt testing.

<u>InUrgent / OutUrgent</u> when set causes the DMA request to have higher priority under certain circumstances. Basically when the TX FIFO is almost empty and InUrgent is set the TX DMA will have higher priority than it would otherwise get. Similarly if the RX FIFO is almost full and OutUrgent is set the read DMA will have higher priority. The purpose is to allow software some control over how DMA requests are processed and to allow for a higher rate channel to have a higher priority over other lower rate channels.

<u>ByPass</u> when set allows the FIFO to be used in a loop-back mode internal to the device. A separate state-machine is enabled when ByPass is set and the TX and RX are not enabled. The state-machine checks the TX and RX FIFO's and when not empty on the TX side and not Full on the RX side moves data between them. Writing to the TX FIFO allows reading back from the RX side. An example of this is included in the Driver reference software.

<u>TxStart</u> when set to '1' provides the SW enable to the Tx state-machine to begin data transfer. The state-machine waits for the combination of SW enable and Tx FIFO not empty. When disabled the state-machine will return to the Idle state. The state-machine will complete the current task before returning. Reset can be used to abort if the SW wants to force back to the Idle state.

<u>TxInt</u> when set to '1' enables the transmitter to cause an interrupt when the data has been transmitted.

<u>TxFifoAmtInt</u> when set enables the programmable interrupt based on the Transmit FIFO level. Set the level to provide enough time to load more data. Since a programmed level the amount of room [minimum] is already known. Alternatively use DMA for automatic data transfer.

<u>RxOflInt</u> when set enables the Receiver OverFlow Interrupt. If the Receiver FIFO is full when it is time to load another LW the status is set. If the interrupt is enabled the status becomes and interrupt request.

<u>RxStart</u> when set enables the receiver to capture data. Data is received, deserialized and loaded into the receive FIFO.

<u>ParEn</u> [Rx & Tx] When set indicates that Parity is to be inserted or detected. The parity bit location is immediately after the last data bit.

<u>ParOddEven</u> [Rx & Tx] when set '1' selects odd parity to be inserted or checked for. When '0' even parity is inserted or expected. ParityOddEven only has meaning when enabled. If the receive parity bit is not consistent with the programmed value a Parity Error is generated. Please see the status register. Odd parity means the parity bit is manipulated to create an odd number of bits including the parity bit. For example with x55555555 as the data pattern the parity bit would be set to make an odd number of 1's. Even parity is set or cleared to cause an even number of 1's.

<u>Stop2</u> [Rx & Tx] when set causes the transmitter to insert 2 stop bits [minimum] between words or the receiver to check for 2 stop bits between words. A framing error is generated if 2 stop bits are not received when expected.

<u>RxTermEn</u> when set '1' enables the termination for the receiver. In most cases this bit should be set. If the termination is in the cable, this bit should not be set.

<u>RxFifoAftIntEnLvI</u>, <u>RxFifoAftIntEnLat</u> when set enable the Rx FIFO Almost Full Interrupt. The Level [LvI] version is set anytime the Rx FIFO has the programmed amount of data or more. The Lat version is latched when the transition from not Almost Full to Almost Full occurs. The status corresponding to this bit is sticky – held until explicitly cleared while the status for the level version is "real time".

BA22_CHAN_6-7_STATUS [0x4] Channel Status Read/Clear Latch Write Port

Channel Status Register		
Data Bit	Description	
31	Interrupt Status	
30	LocalInt	
29	Transmitter Idle	
28-27	spare	
26	Tx DMA FIFO AFL	
25	Tx DMA FIFO AMT	
24	spare	
23	Burstinidle	
22	BurstOutIdle	
21	Spare	
20	Spare	
19	Rx Parity Error Latched	
18	RxFifoOvFILat	
17	Spare	
16	Rx Frame Error Latched	
15	Read DMA Interrupt Occurred	
14	Write DMA Interrupt Occurred	
13	Read DMA Error Occurred	
12	Write DMA Error Occurred	
11	RxAFLvIIntLat	
10	TxAELvIIntLat	
9	Spare	
8	TX Done	
7	spare	
6	Rx FIFO Full	
5	Rx FIFO Almost Full – complete chain	
4	Rx FIFO Empty	
3	Spare	
2	Tx FIFO Full	
1	Tx FIFO Almost Empty	
0	Tx FIFO Empty	

FIGURE 27 PMC-BISERIAL-III BA23 CHANNEL STATUS PORT

BA23 FIFO: A 2K x 32 FIFO is used to create the internal Rx memory. The Tx side is also 2Kx32. The status for the Tx FIFO and Rx FIFO refer to these FIFO's. The status is active high. The Full and Empty status come from the "DMA" FIFO's while the Almost Full and Almost Empty status reflects the state of the total FIFO. 0x13 would correspond to empty Rx and empty Tx DMA FIFO's. The DMA FIFO's are the pair of internal FIFO's which interact with the DMA engine.

Please note with the Rx side status; the status reflects the state of the FIFO and does not take the 4 deep pipeline into account. For example the FIFO may be empty and there may be valid data within the pipeline. The data count with the combined FIFO and pipeline value and can also be used for read size control. [see later in register descriptions]

<u>Rx FIFO Empty</u>: When a one is read, the FIFO contains no data; when a zero is read, there is at least one data word in the FIFO The value reflects the FIFO + Pipeline.

<u>Rx FIFO Almost Full</u>: When a one is read, the number of data words in the data FIFO + pipeline is greater than or equal to the value written to the corresponding RX_AFL_LVL register; when a zero is read, the FIFO level is <= that value.

<u>Rx FIFO Full</u>: When a one is read, the receive data FIFO is full; when a zero is read, there is room for at least one more data-word in the FIFO. If the FIFO is full when time to write received data to the FIFO an overflow error is declared.

<u>Tx FIFO Empty</u>: When a one is read, the FIFO contains no data; when a zero is read, there is at least one data word in the FIFO. If the FIFO is empty when time to read transmitted data from the FIFO an underflow error is declared.

<u>Tx FIFO Almost Empty</u>: When a one is read, the number of data words in the data FIFO is less than the value written to the corresponding TX_AMT_LVL register; when a zero is read, the FIFO level is \geq that value.

<u>Tx FIFO Full</u>: When a one is read, the transmit data FIFO is full; when a zero is read, there is room for at least one more data-word in the FIFO.

<u>RxFifoOvFILat</u>: When a one is read, an error has been detected. This will occur if FIFO is full when the loader function tries to write to it. A zero indicates that no error has occurred. This bit is latched and can be cleared by writing back to the Status register with a one in the appropriate bit position.

<u>Write/Read DMA Error Occurred</u>: When a one is read, a write or read DMA error has been detected. This will occur if there is a target or master abort or if the direction bit in the next pointer of one of the chaining descriptors is incorrect. A zero indicates that no write or read DMA error has occurred. These bits are latched and can be cleared by writing back to the Status register with a one in the appropriate bit position.

<u>Write/Read DMA Interrupt Occurred</u>: When a one is read, a write/read DMA interrupt is latched. This indicates that the scatter-gather list for the current write or read DMA has completed, but the associated interrupt has yet to be processed. A zero indicates that no write or read DMA interrupt is pending.

<u>BO and BI Idle</u> are Burst Out and Burst In IDLE state status for the Receive and Transmit DMA actions. The bits will be 1 when in the IDLE state and 0 when processing a DMA. A new DMA should not be launched until the State machine is back in the IDLE state. Please note that the direction implied in the name has to do with the DMA direction – Burst data into the card for Transmit and burst data out of the card for Receive.

<u>Local Interrupt</u> is the masked combined interrupt status for the channel not including DMA. The status is before the master interrupt enable for the channel.

<u>Interrupt Status</u> is the combined Local Interrupt with DMA and the master interrupt enable. If this bit is set this channel has a pending interrupt request.

<u>Transmitter Idle</u> is set when the Transmit State-Machine is in the Idle state. The statemachine operates at the PLL_C/16 rate and may take a few states to return to Idle from a disable condition. The Idle state can be used to determine when the State-machine is ready to be re-commanded.

<u>TxAELvIIntLat</u>: When set the Tx Data FIFO has become almost Empty based on the programmed count. The software can do a looped write or use DMA to load the programmed count amount of data to the storage FIFO. The signal is latched and can be cleared via write back with this bit set. The signal can be used to generate an interrupt if desired.

<u>RxAFLvIIntLat</u>: When set the Rx Data FIFO has become almost Full based on the programmed count. The software can do a looped read or use DMA to unload the programmed count amount of data to the system memory. The signal is latched and can be cleared via write back with this bit set. The signal can be used to generate an interrupt if desired.

<u>Rx Frame Error Latched</u>: is set if the expected formatting of the data does not match the received. For example, if programmed to expect 2 stop bits and only 1 is detected. This is a sticky bit and is cleared by writing back to the status register with a '1' in this position.

<u>Rx Parity Error Latched</u>: is set if the expected Parity of the data does not match the received. For example, if programmed to expect Odd Parity and Even is received. This is a sticky bit and is cleared by writing back to the status register with a '1' in this position.

<u>TX DONE</u>: is set when the FIFO is empty when it is time to read the next value. The bit is latched and cleared by writing back to this bit position. If enabled this status can cause an interrupt.

BA22_CHAN_6-7_WR_DMA_PNTR

[0x8] Write DMA Pointer (write only)

BurstIn DMA Pointer Address Register			
Data Bit	Description		
31-2	First Chaining Descriptor Physical Address		
1	direction [0]		
0	end of chain		

FIGURE 28 PMC-BISERIAL-III BA23 WRITE DMA POINTER REGISTER

This write-only port is used to initiate a scatter-gather write [TX] DMA. When the address of the first chaining descriptor is written to this port, the DMA engine reads three successive long words beginning at that address. Essentially this data acts like a chaining descriptor value pointing to the next value in the chain.

The first is the address of the first memory block of the DMA buffer containing the data to read into the device, the second is the length in bytes of that block, and the third is the address of the next chaining descriptor in the list of buffer memory blocks. This process is continued until the end-of-chain bit in one of the next pointer values read indicates that it is the last chaining descriptor in the list.

All three values are on LW boundaries and are LW in size. Addresses for successive parameters are incremented. The addresses are physical addresses the HW will use on the PCI bus to access the Host memory for the next descriptor or to read the data to be transmitted. In most OS you will need to convert from virtual to physical. The length parameter is a number of bytes, and must be on a LW divisible number of bytes.

Status for the DMA activity can be found in the channel control register and channel status register.

Notes:

- 1. Writing a zero to this port will abort a write DMA in progress.
- 2. End of chain should not be set for the address written to the DMA Pointer Address Register. End of chain should be set when the descriptor follows the last length parameter.
- 3. The Direction should be set to '0' for Burst In DMA in all chaining descriptor locations.

BA22_CHAN_6-7_TX_FIFO_COUNT

[0x8] TX [Target] FIFO data count (read only)

TX FIFO Data Count Port		
Data Bit 31-0	Description TX Data Words Stored	

FIGURE 29 PMC-BISERIAL-III BA23 TX FIFO DATA COUNT PORT

This read-only register port reports the number of 32-bit data words in the Transmit FIFO.

BA22_CHAN_6-7_RD_DMA_PNTR

[0xC] Read DMA Pointer (write only)

BurstIn DMA Pointer Address Register			
Data Bit	Description		
31-2	First Chaining Descriptor Physical Address		
1	direction [1]		
0	end of chain		

FIGURE 30 PMC-BISERIAL-III BA23 READ DMA POINTER REGISTER

This write-only port is used to initiate a scatter-gather read [RX] DMA. When the address of the first chaining descriptor is written to this port, the DMA engine reads three successive long words beginning at that address. Essentially this data acts like a chaining descriptor value pointing to the next value in the chain.

The first is the address of the first memory block of the DMA buffer to write data from the device to, the second is the length in bytes of that block, and the third is the address of the next chaining descriptor in the list of buffer memory blocks. This process is continued until the end-of-chain bit in one of the next pointer values read indicates that it is the last chaining descriptor in the list.

All three values are on LW boundaries and are LW in size. Addresses for successive parameters are incremented. The addresses are physical addresses the HW will use on the PCI bus to access the Host memory for the next descriptor or to read the data to be transmitted. In most OS you will need to convert from virtual to physical. The length parameter is a number of bytes, and must be on a LW divisible number of bytes.

Status for the DMA activity can be found in the channel control register and channel status register.

Notes:

- 1. Writing a zero to this port will abort a write DMA in progress.
- 2. End of chain should not be set for the address written to the DMA Pointer Address Register. End of chain should be set when the descriptor follows the last length parameter.
- 3. The Direction should be set to '1' for Burst Out DMA in all chaining descriptor locations.

BA22_CHAN_6-7_RX_FIFO_COUNT

[0xC] RX [Master] FIFO data count (read only)

	RX FIFO Data Count Port	
Data Bit 31-0	Description RX Data Words Stored	

FIGURE 31 PMC-BISERIAL-III BA23 RX FIFO DATA COUNT PORT

This read-only register port reports the number of 32-bit data words in the Receive FIFO plus pipeline. The maximum count is the FIFO size plus 4.

BA22_CHAN_6-7_FIFO

[0x10] Write TX/Read RX FIFO Port

	RX and TX FIFO Port	
Data Bit 31-0	Description FIFO data word	

FIGURE 32 PMC-BISERIAL-III BA23 RX/TX FIFO PORT

This port is used to make single-word accesses to and from the FIFO. Data read from this port will no longer be available for DMA transfers. Writing to the port loads the Tx FIFO, Reading unloads the Rx FIFO.

Two pixels are stored per LW. Pixels are 14 bits. Upper two bits per pixel for transmit are ignored. Upper two bits per pixel for Rx are reserved.

D31,D30, D29-D16, D15, D14 D13-0 The data transmitted and received for the D29-16 and D13-0 can be reversed orderwise to match your system memory situation. See the Data_Order control bits. The receive data has an extra feature. Bit 15/31 is set for the pixel corresponding to one having the frame bit set.

BA22_CHAN_6-7_TX_AMT_LVL

[0x14] Tx almost-empty level (read/write)

Tx Almost-Full Level Register		
Data Bit 31-0	Description Tx FIFO Almost-Empty Level	

FIGURE 33 PMC-BISERIAL-III BA23 TX ALMOST EMPTY LEVEL REGISTER

This read/write port accesses the almost-empty level register. When the number of data words in the transmit data FIFO is less than this value, the almost-empty status bit will be set. The register is R/W for 32 bits. The mask is valid for a size matching the depth of the FIFO.

BA22_CHAN_6-7_RX_AFL_LVL

[0x18] Rx almost-full (read/write)

	Rx Almost-Full Level Register	
Data Bit 31-0	Description Rx FIFO Almost-Full Level	

FIGURE 34 PMC-BISERIAL-III BA23 RX ALMOST FULL LEVEL REGISTER

This read/write port accesses the almost-full level register. When the number of data words in the receive data FIFO is equal or greater than this value, the almost-full status bit will be set. The mask is valid for a size matching the depth of the FIFO. The level includes the pipeline for an additional 4 locations.

Loop-back

The PMC-BISERIAL-III BA23 has a 68 pin SCSI II front panel connector. The Engineering kit has reference software, which includes external loop-back tests. Two different test configurations (fixtures) are required to run these tests with the following pins connected.

<u>Signal</u>	From	То	Signal
TX0 DATA+	pin 1	pin 2	RX0 DATA+
TX0 DATA-	pin 35	pin 36	RX0 DATA-
TX1 DATA+	pin 3	pin 4	RX1 DATA+
TX1 DATA-	pin 37	pin 38	RX1 DATA-
TX2 DATA+	pin 5	pin 6	RX2 DATA+
TX2 DATA -	pin 39	pin 40	RX2 DATA-
TX3 DATA+	pin 7	pin 8	RX3 DATA+
TX3 DATA-	pin 41	pin 42	RX3 DATA-
TX4 DATA+	pin 9	pin 10	RX4 DATA+
TX4 DATA-	pin 43	pin 44	RX4 DATA-
TX5 DATA+	pin 11	pin 12	RX5 DATA+
TX5 DATA-	pin 45	pin 46	RX5 DATA-
TX6 DATA+	pin 13	pin 14	RX6 DATA+
TX6 DATA -	pin 47	pin 48	RX6 DATA-
TX7 DATA+	pin 15	pin 16	RX7 DATA+
TX7 DATA-	pin 49	pin 50	RX7 DATA-
DISCRETE OUT0+	pin 17	pin 25	DISCRETE INPUT0+
DISCRETE OUT0 -	pin 51	pin 59	DISCRETE INPUT0 -
DISCRETE OUT1+	pin 18	pin 26	DISCRETE INPUT1+
DISCRETE OUT1 -	pin 52	pin 60	DISCRETE INPUT1 -
DISCRETE OUT2+	pin 19	pin 27	DISCRETE INPUT2+
DISCRETE OUT2 -	pin 53	pin 61	DISCRETE INPUT2 -
DISCRETE OUT3+	pin 20	pin 28	DISCRETE INPUT3+
DISCRETE OUT3 -	pin 54	pin 62	DISCRETE INPUT3 -
DISCRETE OUT4+	pin 21	pin 29	DISCRETE INPUT4+
DISCRETE OUT4 -	pin 55	pin 63	DISCRETE INPUT4 -
DISCRETE OUT5+	pin 22	pin 30	DISCRETE INPUT5+
DISCRETE OUT5 -	pin 56	pin 64	DISCRETE INPUT5 -
DISCRETE OUT6+	pin 23	pin 31	DISCRETE INPUT6+
DISCRETE OUT6 -	pin 57	pin 65	DISCRETE INPUT6 -
DISCRETE OUT7+	pin 24	pin 32	DISCRETE INPUT7+
DISCRETE OUT7 -	pin 58	pin 66	DISCRETE INPUT7 -

Full-Duplex Loop-Back

Half-Duplex Loop-Back

From	То	<u>Signal</u>
pin 1	pin 3	TX/RX 1 DATA+
pin 35	pin 37	TX/RX 1 DATA-
pin 5	pin 7	TX/RX 3 DATA+
pin 39	pin 41	TX/RX 3 DATA-
pin 9	pin 11	TX/RX 5 DATA+
pin 43	pin 45	TX/RX 5 DATA-
pin 17	pin 27	DISCRETE INPUT2+
pin 51	pin 61	DISCRETE INPUT2 -
pin 18	pin 28	DISCRETE INPUT3+
pin 52	pin 62	DISCRETE INPUT3 -
pin 19	, pin 29	DISCRETE INPUT4+
pin 53	pin 63	DISCRETE INPUT4 -
pin 20	pin 30	DISCRETE INPUT5+
pin 54	pin 64	DISCRETE INPUT5 -
pin 21	pin 31	DISCRETE INPUT6+
pin 55	pin 65	DISCRETE INPUT6 -
pin 22	pin 32	DISCRETE INPUT7+
, pin 56	pin 66	DISCRETE INPUT7 -
pin 23	pin 33	DISCRETE INPUT8+
pin 57	pin 67	DISCRETE INPUT8 -
pin 24	pin 34	DISCRETE INPUT9+
pin 58	pin 68	DISCRETE INPUT9 -
	From pin 1 pin 35 pin 5 pin 39 pin 9 pin 43 pin 17 pin 51 pin 52 pin 18 pin 52 pin 19 pin 52 pin 19 pin 52 pin 19 pin 52 pin 19 pin 52 pin 52 pin 53 pin 52 pin 53 pin 54 pin 55 pin 22 pin 55 pin 56 pin 57 pin 24 pin 58	FromTopin 1pin 3pin 35pin 37pin 5pin 7pin 39pin 41pin 9pin 11pin 43pin 45pin 17pin 27pin 51pin 61pin 52pin 62pin 19pin 29pin 53pin 63pin 20pin 30pin 54pin 64pin 21pin 31pin 55pin 65pin 22pin 32pin 56pin 66pin 23pin 33pin 57pin 67pin 58pin 68

PMC PCI Pn1 Interface Pin Assignment

The figure below gives the pin assignments for the PMC Module PCI Pn1 Interface on the PMC-BISERIAL-III BA23. See the User Manual for your carrier board for more information. Unused pins may be assigned by the specification but not needed by this design.

TCK	-12V	1	2	
GND	INTA#	3	4	
		5	6	
BUSMODE1#	+5V	7	8	
		9	10	
GND		11	12	
CLK	GND	13	14	
GND		15	16	
	+5V	17	18	
	AD31	19	20	
AD28	AD27	21	22	
AD25	GND	23	24	
GND	C/BE3#	25	26	
AD22	AD21	27	28	
AD19	+5V	29	30	
	AD17	31	32	
FRAME#	GND	33	34	
GND	IRDY#	35	36	
DEVSEL#	+5V	37	38	
GND	LOCK#	39	40	
		41	42	
PAR	GND	43	44	
	AD15	45	46	
AD12	AD11	47	48	
AD9	+5V	49	50	
GND	C/BE0#	51	52	
AD6	AD5	53	54	
AD4	GND	55	56	
	AD3	57	58	
AD2	AD1	59	60	
	+5V	61	62	
GND		63	64	

FIGURE 35

PMC-BISERIAL-III BA23 PN1 INTERFACE

PMC PCI Pn2 Interface Pin Assignment

The figure below gives the pin assignments for the PMC Module PCI Pn2 Interface on the PMC-BISERIAL-III BA23. See the User Manual for your carrier board for more information. Unused pins may be assigned by the specification but not needed by this design.

+12V		1	2	
TMS	TDO	3	4	
TDI	GND	5	6	
GND		7	8	
		9	10	
		11	12	
RST#	BUSMODE3#	13	14	
	BUSMODE4#	15	16	
	GND	17	18	
AD30	AD29	19	20	
GND	AD26	21	22	
AD24		23	24	
IDSEL	AD23	25	26	
-	AD20	27	28	
AD18		29	30	
AD16	C/BE2#	31	32	
GND		33	34	
TRDY#		35	36	
GND	STOP#	37	38	
PFRR#	GND	39	40	
	SFRR#	41	42	
C/BF1#	GND	43	44	
AD14	AD13	45	46	
GND	AD10	47	48	
AD8		49	50	
		51	52	
ND1		53	54	
	GND	55	56	
		57	58	
GND		59	60	
		61	62	
GND		63	64	
OND		00	04	

FIGURE 36

PMC-BISERIAL-III BA23 PN2 INTERFACE

Front Panel I/O Pin Assignment

The figure below gives the pin assignments for the PMC Module I/O Interface on the **PMC-BiSerial-III BA23.** For a customized version, or other options, contact Dynamic Engineering.

IO_0p IO_1p IO_2p IO_3p IO_4p IO_5p IO_6p IO_7p IO_8p IO_9p	(TX0 DATA +) (RX0 DATA +) (TX1 DATA +) (RX1 DATA +) (TX2 DATA +) (RX2 DATA +) (TX3 DATA +) (RX3 DATA +) (TX4 DATA +) (RX4 DATA +)	IO_0m IO_1m IO_2m IO_3m IO_4m IO_5m IO_5m IO_6m IO_7m IO_8m IO_9m	(TX0 DATA -) (RX0 DATA -) (TX1 DATA -) (RX1 DATA -) (TX2 DATA -) (RX2 DATA -) (TX3 DATA -) (RX3 DATA -) (TX4 DATA -) (RX4 DATA -)	1 2 3 4 5 6 7 8 9 10	35 36 37 38 39 40 41 42 43 44	
IO_11p	(RX5 DATA +)	IO_11m	(RX5 DATA -)	12	46	
IO_12p	(TX6 DATA +)	IO_12m	(TX6 DATA -)	13	47	
IO_13p	(RX6 DATA +)	IO_13m	(RX6 DATA -)	14	48	
IO_14p	(TX7 DATA +)	IO_14m	(TX7 DATA -)	15	49	
IO_15p	(RX7 DATA +)	IO_15m	(RX7 DATA -)	16	50	
IO_16p	(Discrete Out 0 +)	IO_16m	(Discrete Out 0 -)	17	51	
IO_17p	(Discrete Out 1 +)	IO_17m	(Discrete Out 1 -)	18	52	
IO_18p	(Discrete Out 2 +)	IO_18m	(Discrete Out 2 -)	19	53	
IO_19p	(Discrete Out 3 +)	IO_19m	(Discrete Out 3 -)	20	54	
IO_20p	(Discrete Out 4 +)	IO_20m	(Discrete Out 4 -)	21	55	
IO_21p	(Discrete Out 5 +)	IO_21m	(Discrete Out 5 -)	22	56	
IO_22p	(Discrete Out 6 +)	IO_22m	(Discrete Out 6 -)	23	57	
IO_23p	(Discrete Out 7 +)	IO_23m	(Discrete Out 7 -)	24	58	
IO_24p	(Discrete Input 0 +)	10_24m	(Discrete Input 0 -)	25	59	
IO_25p	(Discrete input 1 +)	IO_25m	(Discrete Input 1 -)	26	60	
IO_26p	(Discrete Input 2 +)	10_26m	(Discrete input 2 -)	27	61	
IO_27p	(Discrete input 3 +)	IO_27m	(Discrete input 3 -)	28	62	
IO_28p	(Discrete Input 4 +)	IO_28m	(Discrete Input 4 -)	29	03	
10_29p	(Discrete Input 5 +)	10_29111	(Discrete Input 5 -)	21	04 65	
IO_30p	(Discrete input $\sigma +$)	10_30m	(Discrete Input 6 -)	31 22	60	
IO_31P	(Discrete Input 7 +)	10_3	(Discrete Input ? -)	33	67	
IO_32p	(Discrete Input 0 +)	IO_32m	(Discrete Input $0 -$)	34	68	
10_00p		10_0011		57	00	

FIGURE 37

PMC-BISERIAL-III BA23 FRONT PANEL INTERFACE

Applications Guide

Interfacing

Some general interfacing guidelines are presented below. Do not hesitate to contact the factory if you need more assistance.

ESD

Proper ESD handling procedures must be followed when handling the PMC-BISERIAL-III BA23. The card is shipped in an anti-static, shielded bag. The card should remain in the bag until ready for use. When installing the card the installer must be properly grounded and the hardware should be on an anti-static workstation.

Start-up

Make sure that the "system" can see your hardware before trying to access it. Many BIOS will display the PCI devices found at boot up on a "splash screen" with the VendorID and CardId and an interrupt level. Look quickly, if the information is not available from the BIOS then a third party PCI device cataloging tool will be helpful. We use PCIView.

Watch the system grounds

All electrically connected equipment should have a fail-safe common ground that is large enough to handle all current loads without affecting noise immunity. Power supplies and power consuming loads should all have their own ground wires back to a common point.

We provide the components. You provide the system. Only careful planning and practice can achieve safety and reliability. Inputs can be damaged by static discharge, or by applying voltage outside of the device rated voltages.

Construction and Reliability

PMC Modules were conceived and engineered for rugged industrial environments. The PMC-BISERIAL-III BA23 is constructed out of 0.062-inch thick FR4 material.

Through-hole and surface-mount components are used. The PMC connectors are rated at 1 Amp per pin, 100 insertion cycles minimum. These connectors make consistent, correct insertion easy and reliable.

The PMC is secured against the carrier with four screws attached to the 2 stand-offs and 2 locations on the front panel. The four screws provide significant protection against shock, vibration, and incomplete insertion.

The PMC Module provides a low temperature coefficient of 2.17 W/°C for uniform heat. This is based upon the temperature coefficient of the base FR4 material of 0.31 W/m-°C, and taking into account the thickness and area of the PMC. The coefficient means that if 2.17 Watts are applied uniformly on the component side, then the temperature difference between the component side and solder side is one degree Celsius.

Thermal Considerations

The PMC-BISERIAL-III BA23 design consists of CMOS circuits. The power dissipation due to internal circuitry is very low. It is possible to create higher power dissipation with the externally connected logic. If more than one Watt is required to be dissipated due to external loading, then forced-air cooling is recommended. With the one degree differential temperature to the solder side of the board, external cooling is easily accomplished.

Warranty and Repair

Please refer to the warranty page on our website for the current warranty offered and options.

http://www.dyneng.com/warranty.html

Service Policy

Before returning a product for repair, verify as well as possible that the suspected unit is at fault. Then call the Customer Service Department for a RETURN MATERIAL AUTHORIZATION (RMA) number. Carefully package the unit, in the original shipping carton if this is available, and ship prepaid and insured with the RMA number clearly written on the outside of the package. Include a return address and the telephone number of a technical contact. For out-of-warranty repairs, a purchase order for repair charges must accompany the return. Dynamic Engineering will not be responsible for damages due to improper packaging of returned items. For service on Dynamic Engineering Products not purchased directly from Dynamic Engineering contact your reseller. Products returned to Dynamic Engineering for repair by other than the original customer will be treated as out-of-warranty.

Out of Warranty Repairs

Out of warranty repairs will be billed on a material and labor basis. The current minimum repair charge is \$125. Customer approval will be obtained before repairing any item if the repair charges will exceed one half of the quantity one list price for that unit. Return transportation and insurance will be billed as part of the repair and is in addition to the minimum charge.

For Service Contact:

Customer Service Department Dynamic Engineering 150 DuBois, Suite C Santa Cruz, CA 95060 (831) 457-8891 Fax (831) 457-4793

support@dyneng.com

Specifications

Host Interface:	[PMC] PCI Mezzanine Card – 32-bit, 33 MHz
Serial Interfaces:	Twelve UART interfaces (one in and one out per channel). 8-bit data, LSB first, one start-bit, one or two stop-bits and optional parity. Four UART interfaces (one in and one out per channel). 32-bit data, LSB first, one start-bit, one or two stop-bits and optional parity
TX Bit-rates generated:	Up to 10.4M bits/second; clock reference supplied by the on-board PLL clock A; bit-widths from 16 to 64 I/O clock periods (independently programmable per channel for channels 0-5) PLL clock C based 32 bit channels. Tested with 4.8 MHz transmit rate.
Software Interface:	Control Registers, RAM's, FIFO's and Status Ports
Initialization:	Hardware reset forces all registers to 0 except as noted
Access Modes:	LW boundary Space (see memory maps)
Wait States:	One for all addresses
Interrupt:	TX message sent, RX message received, RX parity error and RX framing error for each channel
DMA:	16-channel Scatter/Gather DMA support implemented
Onboard Options:	All Options are Software Programmable
Interface Options:	68 pin twisted pair cable 68 screw terminal block interface
Dimensions:	Standard Single PMC Module
Construction:	FR4 Multi-Layer Printed Circuit, Through-Hole and Surface-Mount Components
Temperature Coefficient:	2.17 W/ ^O C for uniform heat across PMC
Power:	Max. TBD mA @ 5V

Temperature range	Standard (0 to +70)
	Extended Temperature available (-40 to +85)

Order Information

PMC-BISERIAL-III BA23 PMC Module with 8 serial channels, two RS-485 asynchronous I/O per channel (one in and one out); one discrete RS-485 output signal per channel; discrete input used for UART and/or discrete output trigger, each channel selects any one from ten RS-485 inputs. Channels 0-5 are byte oriented. Channels 6,7 are 32 bit UARTs.

Eng Kit PMC-BISERIAL-III BA23 HDEterm68 - 68 position screw terminal adapter http://www.dyneng.com/HDEterm68.html HDEcabl68 - 68 I/O twisted pair cable http://www.dyneng.com/HDEcabl68.html Technical Documentation,

1. PMC-BiSerial-III Schematic

2. PMC-BISERIAL-III BA23 Driver software and user application.

Data sheet reprints are available from the manufacturer's web site

Note: The Engineering Kit is strongly recommended for first time **PMC-BiSerial-III** purchases.

Schematics

Schematics are provided as part of the engineering kit for customer *reference only*. This information was current at the time the printed circuit board was last revised. The revision letter is shown on the front of this manual as "Corresponding Hardware Revision." This information is not necessarily current or complete manufacturing data, nor is it part of the product specification.

All information provided is Copyright Dynamic Engineering

