
DYNAMIC ENGINEERING

150 DuBois, Suite C

Santa Cruz, CA 95060
(831) 457-8891 Fax (831) 457-4793

http://www.dyneng.com
sales@dyneng.com

Est. 1988

PMC BISERIAL 6 UART
Software Manual

8-Channel UART Interface

Driver Documentation

Developed with Windows Driver Foundation Ver1.9

Manual Revision B

Corresponding Hardware: 10-2015-0601

PMC BISERIAL 6 UART

http://www.dyneng.com/
mailto:dedra@dyneng.com

 Embedded Solutions Page 2 of 18

PMC BISERIAL 6 UART

8-Channel UART Interface

Dynamic Engineering

150 DuBois, Suite C

Santa Cruz, CA 95060

(831) 457-8891

FAX: (831) 457-4793

This document contains information of
proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the
recipient, by accepting this material, agrees that
the subject matter will not be copied or
reproduced, in whole or in part, nor its contents
revealed in any manner or to any person except
to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to
ensure that this manual is accurate and
complete. Still, the company reserves the right to
make improvements or changes in the product
described in this document at any time and
without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of
the application or use of the device described
herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this equipment
in a residential area is likely to cause radio
interference, in which case the user, at his own
expense, will be required to take whatever
measures may be required to correct the
interference.

Dynamic Engineering’s products are not
authorized for use as critical components in life
support devices or systems without the express
written approval of the president of Dynamic
Engineering.

Connection of incompatible hardware is likely to
cause serious damage.

©2017 by Dynamic Engineering.

Other trademarks and registered trademarks are owned by
their respective manufacturers.
Manual Revision B: Revised 5/10/17, 2017

 Embedded Solutions Page 3 of 18

Introduction ... 4
Software Description ... 4
Note ... 4
Driver Installation ... 5
Windows 7 Installation ... 5
Driver Startup .. 6
IO Controls .. 7

IOCTL_UART_BASE_GET_INFO ... 7
IOCTL_UART_BASE_GET_STATUS ... 8
IOCTL_UART_BASE_LOAD_PLL .. 8
IOCTL_UART_BASE_READ_PLL .. 8
IOCTL_UART_CHAN_GET_INFO .. 8
IOCTL_UART_CHAN_SET_CONT ... 9
IOCTL_UART_CHAN_GET_CONT .. 9
IOCTL_UART_CHAN_SET_CONT_B .. 10
IOCTL_UART_CHAN_GET_CONT_B .. 10
IOCTL_UART_CHAN_GET_STATUS .. 11
IOCTL_UART_CHAN_CLEAR_STATUS .. 11
IOCTL_UART_CHAN_SET_BAUD_RATE ... 12
IOCTL_UART_CHAN_GET_BAUD_RATE ... 12
IOCTL_UART_CHAN_SET_FIFO_LEVELS ... 12
IOCTL_UART_CHAN_GET_FIFO_LEVELS ... 13
IOCTL_UART_CHAN_SET_FRAME_TIME .. 13
IOCTL_UART_CHAN_GET_FRAME_TIME ... 13
IOCTL_UART_CHAN_GET_FIFO_COUNTS ... 13
IOCTL_UART_CHAN_RESET_FIFOS ... 14
IOCTL_UART_CHAN_REGISTER_EVENT .. 14
IOCTL_UART_CHAN_ENABLE_INTERRUPT ... 14
IOCTL_UART_CHAN_DISABLE_INTERRUPT .. 14
IOCTL_UART_CHAN_FORCE_INTERRUPT ... 15
IOCTL_UART_CHAN_GET_ISR_STATUS .. 15
IOCTL_UART_CHAN_SWW_TX_FIFO .. 15
IOCTL_UART_CHAN_SWR_RX_FIFO .. 15
IOCTL_UART_CHAN_WRITE_PKT_LEN .. 15
IOCTL_UART_CHAN_READ_PKT_LEN .. 16
IOCTL_UART_CHAN_SET_TIMER .. 16
IOCTL_UART_CHAN_GET_TIMER ... 16
IOCTL_UART_CHAN_GET_TIMER_CNT .. 16

Write .. 17
Read .. 17

Warranty and Repair ... 18
Service Policy .. 18

Out of Warranty Repairs .. 18
For Service Contact: .. 18

 Embedded Solutions Page 4 of 18

Introduction

PmcBis6Uart is a 8 UART port PMC compatible interface card. This driver was
developed with the Windows Driver Foundation version 1.9 (WDF) from Microsoft,
specifically the Kernel-Mode Driver Framework (KMDF).

The UART functionality is implemented in a Xilinx FPGA. It implements a PCI interface,
FIFO’s and protocol control/status for 8 channels. Each channel has separate 255 x 32
bit receive data and transmit data FIFO’s.

When the PmcBis6Uart board is recognized by the PCI bus configuration utility it will
load the PmcBis6Uart driver which will create a device object for the board, initialize the
hardware, and create child devices for the 8 I/O channels.

Software Description

The PmcBis6Uart driver supports simultaneous operation of all ports independently.
The driver and HW support both a packed and non-packed mode of operation. Non-
packed mode functions as a virtual 8 bit port simulating the standard UART mode of
operation. Specifically each access to the read/write port transfers 1 byte of data.

Packed mode supports 4 bytes of data per access. This mode can be controlled via the
IOCTL_UART_SET_CHANNEL_CONFIG. Tx access and Rx access can be set
independently of one another.

Note

This documentation will provide information about all calls made to the drivers, and how
the drivers interact with the device for each of these calls. For more detailed
information on the hardware implementation, refer to the PmcBis6Uart hardware
manual.

 Embedded Solutions Page 5 of 18

Driver Installation

There are several files provided in each driver package. These files include
UartBasePublic.h, UartBase.inf, uartbase.cat, UartBase.sys, UartChanPublic.h,
UartChanb.inf, uartchan.cat, UartChan.sys, and WdfCoInstaller01009.dll.

UartBasePublic.h and UartChanPublic.h are the C header file that defines the
Application Program Interface (API) for the PmcBis6Uart drivers. This file is required at
compile time by any application that wishes to interface with the drivers, but is not
needed for driver installation.

Windows 7 Installation

Copy UartBase.inf, uartbase.cat, UartBase.sys, and WdfCoInstaller01009.dll (Win7
version) to a floppy disk, CD or USB memory device as preferred.

With the PMC BISERIAL 6 UART hardware installed, power-on the PCI host computer.

 Open the Device Manager from the control panel.

 Under Other devices there should be an Other PCI Bridge Device*.

 Right-click on the Other PCI Bridge Device and select Update Driver Software.

 Insert the disk or memory device prepared above in the desired drive.

 Select Browse my computer for driver software.

 Select Let me pick from a list of device drivers on my computer.

 Select Next.

 Select Have Disk and enter the path to the device prepared above.

 Select Next.

 Select Close to close the update window.
The system should now display the UartBase PCI adapter in the Device Manager.

* If the Other PCI Bridge Device is not displayed, click on the Scan for hardware
changes icon on the tool-bar.

Follow the same steps to install each of the 8 Channel drivers.

 Embedded Solutions Page 6 of 18

Driver Startup

Once the driver has been installed it will start automatically when the system recognizes
the hardware.

A handle can be opened to a specific board by using the CreateFile() function call and
passing in the device name obtained from the system.

The interface to the device is identified using globally unique identifiers (GUID), which
are defined in UartBasePublic.h and UartChanPublic.h. See main.c in the
PmcBis6UartUserApp project for an example of how to acquire a handle to the device.

Note: In order to build an application you must link with setupapi.lib.

 Embedded Solutions Page 7 of 18

IO Controls

The drivers use IO Control calls (IOCTLs) to configure the device. IOCTLs refer to a
single Device Object, which controls a single board or I/O channel. IOCTLs are called
using the Win32 function DeviceIoControl(), and passing in the handle to the device
opened with CreateFile() (see above). IOCTLs generally have input parameters, output
parameters, or both. Often a custom structure is used.

BOOL DeviceIoControl(

 HANDLE hDevice, // Handle opened with CreateFile()

 DWORD dwIoControlCode, // Control code defined in API header file

 LPVOID lpInBuffer, // Pointer to input parameter

 DWORD nInBufferSize, // Size of input parameter

 LPVOID lpOutBuffer, // Pointer to output parameter

 DWORD nOutBufferSize, // Size of output parameter

 LPDWORD lpBytesReturned, // Pointer to return length parameter

 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped structure

); // used for asynchronous I/O

The IOCTLs defined for the PMC BISERIAL 6 UART driver are described below:

IOCTL_UART_BASE_GET_INFO

Function: Returns the device driver version, design version, design type, user switch value,
device instance number and PLL device ID.
Input: None
Output: PUART_BASE_DRIVER_DEVICE_INFO structure
Notes: The switch value is the configuration of the 8-bit onboard dipswitch that has been
selected by the user (see the board silk screen for bit position and polarity). Instance number
is the zero-based device number. See the definition of UART_BASE_DRIVER_DEVICE_INFO
below. Bit definitions can be found in the ‘BASE_GP’ section under Register Definitions in the
Hardware manual.

typedef struct _UART_BASE_DRIVER_DEVICE_INFO

{

 UCHAR DriverVersion;

 UCHAR XilType;

 UCHAR RevMaj;

 UCHAR RevMin;

 UCHAR PllDeviceId;

 UCHAR SwitchValue;

 ULONG InstanceNumber;

} UART_BASE_DRIVER_DEVICE_INFO, *PUART_BASE_DRIVER_DEVICE_INFO;

 Embedded Solutions Page 8 of 18

IOCTL_UART_BASE_GET_STATUS

Function: Returns Interrupt Base Status Register.
Input: None
Output: ULONG
Notes: Provides the interrupt status of each of the 8 channels. Bit definitions can be found in
‘BASE_INT’ section under Register Definitions in the Hardware manual.

IOCTL_UART_BASE_LOAD_PLL

Function: Loads the internal registers of the PLL.
Input: UART_BASE_PLL_DATA structure
Output: None
Notes: After the PLL has been configured, the register array data is analysed to
determine the programmed frequencies, and the IO clock A-D initial divisor fields in the
base control register are automatically updated.

IOCTL_UART_BASE_READ_PLL

Function: Returns the contents of the PLL’s internal registers
Input: None
Output: UART_BASE_PLL_DATA structure
Notes: The register data is output in the UART_BASE_PLL_DATA structure In an array
of 40 bytes

IOCTL_UART_CHAN_GET_INFO

Function: Returns the device driver version and instance number.
Input: None
Output: UART_CHAN_DRIVER_DEVICE_INFO structure
Notes: Instance number is the zero-based device number. See the definition of
UART_CHAN_DRIVER_DEVICE_INFO below.

typedef struct _UART_CHAN_DRIVER_DEVICE_INFO {

 UCHAR DriverVersion;

 ULONG InstanceNumber;

} UART_CHAN_DRIVER_DEVICE_INFO, *PUART_CHAN_DRIVER_DEVICE_INFO;

 Embedded Solutions Page 9 of 18

IOCTL_UART_CHAN_SET_CONT

Function: Specifies the base control configuration.
Input: UART_CHAN_CONT structure
Output: None
Notes: All bits are active high and are reset on system power up or reset. See the definition of
UART_CHAN_CONT below. Bit definitions can be found in the ‘UART_CHAN_CONT’ section
under Register Definitions in the Hardware manual.

typedef struct _UART_CHAN_CONT {

 BOOLEAN lb_enable;

 BOOLEAN tx_enable;

 BOOLEAN rx_enable;

 BOOLEAN rx_err_int_en;

 BOOLEAN tx_fifo_amt_int_en;

 BOOLEAN rx_fifo_afl_int_en;

 BOOLEAN rx_ovrflow_int_en;

 BOOLEAN rx_pkt_lvl_int_en;

 BOOLEAN tx_break;

 BOOLEAN tx_par_en;

 BOOLEAN tx_par_odd;

 BOOLEAN tx_stop_2;

 BOOLEAN tx_len_8;

 BOOLEAN rx_par_en;

 BOOLEAN rx_par_odd;

 BOOLEAN rx_stop_2;

 BOOLEAN rx_len_8;

 BOOLEAN tx_par_lvl;

 BOOLEAN rx_par_lvl;

 TX_RX_MODE tx_mode;

 TX_RX_MODE rx_mode;

} UART_CHAN_CONT, *PUART_CHAN_CONT;

typedef enum _TX_RX_MODE {

 ONE_BYTE,

 PACKED,

 PACKETIZED,

 ALT_PACK,

 TEST, // only valid for tx mode

} TX_RX_MODE, *PTX_RX_MODE;

IOCTL_UART_CHAN_GET_CONT

Function: Returns the fields set in the previous call.
Input: None
Output: UART_CHAN_CONT structure
Notes: Returns the values set in the previous call. See the definition of UART_CHAN_CONT
above.

 Embedded Solutions Page 10 of 18

IOCTL_UART_CHAN_SET_CONT_B

Function: Specifies the base control configuration.
Input: UART_CHAN_CONT_B structure
Output: None
Notes: All bits are active high and are reset on system power up or reset. See the
definition of UART_CHAN_CONT_B below. Bit definitions can be found in the
‘UART_CHAN_CONTB’ section under Register Definitions in the Hardware manual.

typedef struct _UART_CHAN_CONT_B {

 BOOLEAN brk_rise_int_en;

 BOOLEAN brk_fall_int_en;

 BOOLEAN brk_int_en;

 BOOLEAN tx_pck_done_int_en;

 BOOLEAN dir_tx;

 BOOLEAN term_rx;

 BOOLEAN term_tx;

 BOOLEAN rx_pck_done_int_en;

 UCHAR tx_pck_delay_mask;

 BOOLEAN tx_timer_en;

 BOOLEAN timer_int_en;

 BOOLEAN tx_timer_emsk;

 UART_TIMER_MODE timer_mode;

 BOOLEAN dir_rts;

 BOOLEAN force_rts;

 BOOLEAN inv_flow_cont;

 BOOLEAN use_cts;

 BOOLEAN term_rts;

 BOOLEAN term_cts;

 BOOLEAN pll_input;

} UART_CHAN_CONT_B, *PUART_CHAN_CONT_B;

typedef enum _UART_TIMER_MODE {

 DISABLE_BOTH,

 ENABLE_TIMER,

 ENABLE_TRISTATE,

 ENABLE_BOTH

} UART_TIMER_MODE, *PUART_TIMER_MODE;

IOCTL_UART_CHAN_GET_CONT_B

Function: Returns the fields set in the previous call.
Input: None
Output: UART_CHAN_CONT_B structure
Notes: Returns the values set in the previous call. See the definition of
UART_CHAN_CONT_B above.

 Embedded Solutions Page 11 of 18

IOCTL_UART_CHAN_GET_STATUS

Function: Returns the value of the channel status register.
Input: None
Output: ULONG
Notes: See Channel status bit definitions below. You can use any of the Masks provided in the
UartChanPublic.h file to mask off the desired bits. Bit definitions can be found in the
‘UART_CHAN_STAT’ section under Register Definitions in the Hardware manual.

// Channel Status bit definitions

#define STAT_TX_FF_MT 0x00000001

#define STAT_TX_FF_AMT 0x00000002

#define STAT_TX_FF_FL 0x00000004

#define STAT_TX_TIMER_LAT 0x00000008

#define STAT_RX_FF_MT 0x00000010

#define STAT_RX_FF_AFL 0x00000020

#define STAT_RX_FF_FL 0x00000040

#define STAT_RTS_STAT 0x00000080

#define STAT_TX_PAR_ERR_LAT 0x00000100

#define STAT_RX_FRM_ERR_LAT 0x00000200

#define STAT_RX_OVRFL_LAT 0x00000400

#define STAT_RX_LEN_OVRFL_LAT 0x00000800

#define STAT_WR_DMA_ERR 0x00001000

#define STAT_RD_DMA_ERR 0x00002000

#define STAT_WR_DMA_INT 0x00004000

#define STAT_RD_DMA_INT 0x00008000

#define STAT_RX_PCKT_FF_MT 0x00010000

#define STAT_RX_PCKT_FF_FL 0x00020000

#define STAT_TX_PCKT_FF_MT 0x00040000

#define STAT_TX_PCKT_FF_FL 0x00080000

#define STAT_LOC_INT 0x00100000

#define STAT_INT_STAT 0x00200000

#define STAT_RX_PCKT_DONE_LAT 0x00400000

#define STAT_TX_PCKT_DONE_LAT 0x00800000

#define STAT_TX_IDLE 0x01000000

#define STAT_RX_IDLE 0x02000000

#define STAT_BURST_IN_IDLE 0x04000000

#define STAT_BURST_OUT_IDLE 0x08000000

#define STAT_BRK_STAT_LAT 0x10000000

#define STAT_BRK_STAT 0x20000000

#define STAT_TX_AMT_LAT 0x40000000

#define STAT_RX_AFL_LAT 0x80000000

IOCTL_UART_CHAN_CLEAR_STATUS

Function: Clears specified latched status bits then returns the value of the channel status
register.
Input: ULONG
Output: None
Notes: Write to the bit to clear the specific latch to be cleared. . Bit definitions can be found in

 Embedded Solutions Page 12 of 18

the ‘UART_CHAN_STAT’ section under Register Definitions in the Hardware manual.

IOCTL_UART_CHAN_SET_BAUD_RATE

Function: Write to set TX/RX baud rate.
Input: UART_CHAN_BAUD_RATE
Output: None
Notes: See the definition of UART_CHAN_BAUD_RATE below. Definition can be found
in the ‘CHAN_BAUD_RATE’ section under Register Definitions in the Hardware manual.

typedef struct _UART_CHAN_BAUD_RATE{

 USHORT TxBaudRate;

 USHORT RxBaudRate;

} UART_CHAN_BAUD_RATE, *PUART_CHAN_BAUD_RATE;

IOCTL_UART_CHAN_GET_BAUD_RATE

Function: Read to get TX/RX baud rate
Input: None
Output: UART_CHAN_BAUD_RATE
Notes: Returns the values set in the previous call. See the definition of
UART_CHAN_BAUD_RATE above.

IOCTL_UART_CHAN_SET_FIFO_LEVELS

Function: Sets the transmitter almost empty and receiver almost full levels for the
channel.
Input: UART_CHAN_FIFO_LEVELS structure
Output: None
Notes: Almost empty and Almost full should be set to 0x0010 and 0x00EF respectively
before use of FIFOS. The FIFO counts are compared to these levels to set the value of
the CHAN_STAT_TX_FF_AMT and CHAN_STAT_RX_FF_AFL status bits and latch the
CHAN_STAT_TX_AMT_LT and CHAN_STAT_RX_AFL_LT latched status bits. See the
definition of UART_CHAN_FIFO_LEVELS below. Full definition can be found in the
‘CHAN_TXFIFO_LVL’ and the ‘CHAN_RXFIFO_LVL’ sections under Register
Definitions in the Hardware manual.

typedef struct _UART_CHAN_FIFO_LEVELS {

 USHORT AlmostFull;

 USHORT AlmostEmpty;

} UART_CHAN_FIFO_LEVELS, *PUART_CHAN_FIFO_LEVELS;

 Embedded Solutions Page 13 of 18

IOCTL_UART_CHAN_GET_FIFO_LEVELS

Function: Returns the transmitter almost empty and receiver almost full levels for the channel.
Input: None
Output: UART_CHAN_FIFO_LEVELS structure
Notes: Returns the values set in the previous call. See the definition of
UART_CHAN_FIFO_LEVELS above.

IOCTL_UART_CHAN_SET_FRAME_TIME

Function: Write to set Frame time
Input: ULONG
Output:
Notes: Programmable count to determine how long to wait without a new character arriving for
receiver to declare “end of packet”. Full definition can be found under Register definitions
under CHAN_FRAME_TIME in hardware manual

IOCTL_UART_CHAN_GET_FRAME_TIME

Function: Read to get Frame time
Input: None
Output: ULONG

IOCTL_UART_CHAN_GET_FIFO_COUNTS

Function: Returns the number of data words in the transmit and receive data and
packet-length FIFOs.
Input: None
Output: UART_CHAN_FIFO_COUNTS structure
Notes: The FIFOs are both 256 deep. See the definition of
UART_CHAN_FIFO_COUNTS below. Full definition can be found in the
‘CHAN_RX_FIFO_CNT’ AND ‘CHAN_TX_FIFO_CNT’ sections under Register
Definitions in the Hardware manual.

typedef struct _UART_CHAN_FIFO_COUNTS {

 USHORT TxDataCnt;

 USHORT TxPktCnt;

 USHORT RxDataCnt;

 USHORT RxPktCnt;

} UART_CHAN_FIFO_COUNTS, *PUART_CHAN_FIFO_COUNTS;

 Embedded Solutions Page 14 of 18

IOCTL_UART_CHAN_RESET_FIFOS

Function: Resets TX and/or RX FIFOs for specified channel.
Input: UART_FIFO_SEL
Output: None
Notes: Call the function with UART_TX, UART_RX, or UART_BOTH to reset the desired
FIFO. See Definition of UART_FIFO_SEL below.

typedef enum _UART_FIFO_SEL {

 UART_TX,

 UART_RX,

 UART_BOTH

} UART_FIFO_SEL, *PUART_FIFO_SEL;

IOCTL_UART_CHAN_REGISTER_EVENT

Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned
from that call as the input to this IOCTL. The driver then obtains a system pointer to the
event and signals the event when a user interrupt is serviced. The user interrupt
service routine waits on this event, allowing it to respond to the interrupt.

IOCTL_UART_CHAN_ENABLE_INTERRUPT

Function: Enables the channel master interrupt.
Input: None
Output: None
Notes: This command must be run to allow the board to respond to user interrupts.
The master interrupt enable is disabled in the driver interrupt service routine when a
user interrupt is serviced. Therefore this command must be run after each user
interrupt occurs to re-enable it.

IOCTL_UART_CHAN_DISABLE_INTERRUPT

Function: Disables the channel master interrupt.
Input: None
Output: None
Notes: This call is used when user interrupt processing is no longer desired.

 Embedded Solutions Page 15 of 18

IOCTL_UART_CHAN_FORCE_INTERRUPT

Function: Causes a system interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the PCI bus as long as the channel
master interrupt is enabled. This IOCTL is used for development, to test interrupt
processing.

IOCTL_UART_CHAN_GET_ISR_STATUS

Function: Returns the interrupt status read in the ISR from the last user interrupt.
Input: None
Output: Interrupt status value (unsigned long integer)
Notes: Returns the interrupt status that was read in the interrupt service routine of the
last interrupt caused by one of the enabled channel interrupts. The new field is true if
the Status has been updated since it was last read.

IOCTL_UART_CHAN_SWW_TX_FIFO

Function: Writes a single longword to TX FIFO.
Input: Data (unsigned long)
Output: None
Notes: Data is the longword to write. Full definition can be found in the ‘CHAN_UART_FIFO’
section under Register Definitions in the Hardware manual.

IOCTL_UART_CHAN_SWR_RX_FIFO

Function: Reads a single longword from RX FIFO.
Input: None
Output: Data (unsigned long)
Notes: Read data is the one written in above IOCTL.

IOCTL_UART_CHAN_WRITE_PKT_LEN

Function: Write a received packet-length value from the packet-length FIFO.
Input: PUSHORT
Output: None
Notes: Full definition can be found in the ‘CHAN_PACKET_FIFO’ section under Register
Definitions in the Hardware manual.

 Embedded Solutions Page 16 of 18

IOCTL_UART_CHAN_READ_PKT_LEN

Function: Reads a received packet-length value from the packet-length FIFO.
Input: None
Output: UART_PACKET_FIFO
Notes: UART_PACKET_FIFO includes parity errors, frame errors, Rx overflow errors or
Rx length overflow errors that occur.

typedef struct _UART_PACKET_FIFO {

 USHORT RX_PKT_FIFO;

 BOOLEAN ParErr;

 BOOLEAN FrmErr;

 BOOLEAN RxDataOvflErr;

 BOOLEAN RxPckOvflErr;

} UART_PACKET_FIFO, *PUART_PACKET_FIFO;

IOCTL_UART_CHAN_SET_TIMER

Function: Write to set Timer register
Input: ULONG
Output:
Notes: Programmable count to define a range used in the TxTimer32 function. Full definition
can be found in the Register definitions under CHAN_TX_TIMER_MOD in hardware manual

IOCTL_UART_CHAN_GET_TIMER

Function: Read from Timer register
Input: None
Output: ULONG
Notes: Reads back the value written in the Timer register

IOCTL_UART_CHAN_GET_TIMER_CNT

Function: Read from Timer Count register.
Input: None
Output: ULONG
Notes: Allows user to monitor the current count in the TxTimer32 function

 Embedded Solutions Page 17 of 18

Write

PmcBis6Uart RAM data is written to the device using the write command. Writes are
executed using the function WriteFile() and passing in the handle to the device opened
with CreateFile(), a pointer to a pre-allocated buffer containing the data to be written, an
unsigned long integer that represents the size of that buffer in bytes, a pointer to an
unsigned long integer to contain the number of bytes actually written, and a pointer to
an optional Overlapped structure for performing asynchronous IO.

Read

PmcBis6Uart RAM data is read from the device using the read command. Reads are
executed using the function ReadFile() and passing in the handle to the device opened
with CreateFile(), a pointer to a pre-allocated buffer that will contain the data read, an
unsigned long integer that represents the size of that buffer in bytes, a pointer to an
unsigned long integer to contain the number of bytes actually read, and a pointer to an
optional Overlapped structure for performing asynchronous IO.

For PmcBis6Uart write and read are implemented with Kernel level write and read
for high performance.

 Embedded Solutions Page 18 of 18

Warranty and Repair

Dynamic Engineering warrants this product to be free from defects under normal use
and service and in its original, unmodified condition, for a period of one year from the
time of purchase. If the product is found to be defective within the terms of this
warranty, Dynamic Engineering's sole responsibility shall be to repair, or at Dynamic
Engineering's sole option to replace, the defective product.

Dynamic Engineering's warranty of and liability for defective products is limited to that
set forth herein. Dynamic Engineering disclaims and excludes all other product
warranties and product liability, expressed or implied, including but not limited to any
implied warranties of merchantability or fitness for a particular purpose or use, liability
for negligence in manufacture or shipment of product, liability for injury to persons or
property, or for any incidental or consequential damages.

Dynamic Engineering’s products are not authorized for use as critical components in life
support devices or systems without the express written approval of the president of
Dynamic Engineering.

Service Policy

Before returning a product for repair, verify as well as possible that the driver is at fault.
The driver has gone through extensive testing and in most cases it will be “cockpit error”
rather than an error with the driver. When you are sure or at least willing to pay to have
someone help then call the Customer Service Department and arrange to speak with an
engineer. We will work with you to determine the cause of the issue. If the issue is one
of a defective driver we will correct the problem and provide an updated module(s) to
you [no cost]. If the issue is of the customer’s making [anything that is not the driver]
the engineering time will be invoiced to the customer. Pre-approval may be required in
some cases depending on the customer’s invoicing policy.

Out of Warranty Repairs

Out of warranty support will be billed. The current minimum repair charge is $125. An
open PO will be required.

For Service Contact:

Customer Service Department
Dynamic Engineering
150 DuBois, Suite C Santa Cruz, CA 95060
(831) 457-8891 Fax (831) 457-4793

support@dyneng.com
All information provided is Copyright Dynamic Engineering.

mailto:support@dyneng.com

