
DYNAMIC ENGINEERING
150 DuBois St. Suite C Santa Cruz CA 95060

831-457-8891
 https://www.dyneng.com

sales@dyneng.com
 Est. 1988

Software User’s Guide
(Linux)

SpaceWire RMAP

 Embedded Solutions Page 2

SpaceRMAP

Dynamic Engineering
150 DuBois St Suite C
Santa Cruz, CA 95060
831-457-8891

This document contains information of
proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the
recipient, by accepting this material, agrees that
the subject matter will not be copied or
reproduced, in whole or in part, nor its contents
revealed in any manner or to any person except
to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to
ensure that this manual is accurate and
complete. Still, the company reserves the right to
make improvements or changes in the product
described in this document at any time and
without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of
the application or use of the device described
herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this equipment
in a residential area is likely to cause radio
interference, in which case the user, at his own
expense, will be required to take whatever
measures may be required to correct the
interference.

Dynamic Engineering’s products are not
authorized for use as critical components in life
support devices or systems without the express
written approval of the president of Dynamic
Engineering.

Connection of incompatible hardware is likely to
cause serious damage.

©2004-2021 by Dynamic Engineering.
Other trademarks and registered trademarks are owned by their
respective manufactures.
Revised 05/26/2021

 Embedded Solutions Page 3

PRODUCT DESCRIPTION 4

Software Description 4

APPLICATION PROGRAMMING MODEL 5

INSTALLATION 9

RMAP SERVER AND CLIENT APPLICATIONS 9

Invocation parameters 9

Warranty and Repair 11

Service Policy 11
Out of Warranty Repairs 11

For Service Contact: 11

Table of Contents

 Embedded Solutions Page 4

Product Description
SpaceWire Remote Memory Access Protocol (RMAP) was developed to support
reading and writing from/to memory in a remote SpaceWire.node. RMAP can be
used to configure a SpaceWire network, control SpaceWire nodes, and transfer
data between nodes. Software is written in C and currently executes on Linux.

Software Description
The Dynamic Engineering SpaceWire RMAP package was developed and
implemented to configure/control our SpaceWire Router product. It supports
both in-band (SpaceWire) and out-of-band interfaces including Ethernet, and
serial/USB interfaces. The Dynamic Engineering SpaceWire router has both
interfaces as well as 12 SpaceWire router ports.

The RMAP package is compliant with applicable SpaceWire specifications,
specifically ECSS-ES-50-12C and ECSS-E-50-11C. The software package
consists of 2 user space applications. A client RMAP application as well as a
server application. Typically. the client application is run on a host computer.
For in-band communication, a SpaceWire adapter card must be installed on the
host. The server issues RMAP commands and processes corresponding
response packets.

The server application (contained in de_RmapSrvr.c) nominally executes in an
embedded SpaceWire node. Any packet with a destination address of 0 would
be directed to this application. The server executes the specified memory read
or write command upon receipt. It then formats the response packet to be
returned on the SpaceWire port it was received.

The RMAP package supports the following commands and responses: read
single address, read multiple (incrementing address), read/modify/write single
address, and write single address. All commands executed may optionally be
logged to a file by the server app assuming the node has a filesystem. This is
useful for initial bring-up and any subsequent debug as required. The client
application includes a menu for initiating command packets and displaying the
corresponding responses. The menu routine for the client application
demonstrates appropriate usage of APIs/functions contained in the package.

Most of the RMAP code base is shared/utilized in the Dynamic Engineering
SpaceWire Router. Sections of code specific to the router are conditionally
compiled via a compile time switch. Router registers are accessible from user
space in this product, thus the RMAP package as delivered allocates memory for
demonstration purposes. When installed, the end user merely points the pointer
devMem (in de_RmapSrvr.c) to the RMAP memory space.

 Embedded Solutions Page 5

If RMAP memory is not accessible from user space, end user must modify
access methods as appropriate such as ioctl access. Access methods are
contained in de_SpwrCmnRmap.c, specifically wrData and rdData.

Further, mutual exclusion is supported via a compile time switch. One possible
method is defined in de_SpwrCmn.h via the macros GET_LOCK and
PUT_LOCK.

Four top level routines are invoked by server application. de_confMgmt
configures the RMAP interface as program arguments specify. If in-band
management (SpaceWire) is utilized, the Dynamic Engineering SpaceWire
adapter is assumed for this example. However, any vendor’s card should be
compatible with minor modifications.

Next, de_rcvRMAP is invoked to receive a RMAP command packet, assuming
the packet received is indeed addressed to RMAP command port,
de_procRmapCmd is invoked. This function parses and validates the command
packet. If command packet is proper, the command is executed, and an
appropriate reply packet is formatted and returned. The reply packet is then
returned to requestor via de_sndRmap.

The RMAP client application is contained in de_RmapClient.c It invokes 3 top
level functions. de_confMgmtIf, the same function invoked by the server
application. Of course, both applications must be configured to use same
communication interface. de_fmtRmapCmd formats the specified command
packet, transmits the command packet, and returns the transaction ID of the
command. de_getRmapRply is invoked to receive and parse the expected
response packet. These functions utilize the same send and receive functions as
the server.

Application Programming model
APIs for top level functions described above:

 Embedded Solutions Page 6

/**
* de_confMgmtIf
*
* This function configures the specified management interface
* for RMAP command processing
*
* Parameters:
* iface - Management interface (0 = SpaceWire, 1 = USB,
* 2 = Ethernet
* port - device number for SpaceWire or USB, UDP port for
* Ethernet
* mgmtIp - IP address in IPv4 format if interface is Ethernet
* and code executing on management app, otherwise *
* don't care.
*
* Special Considerations:
*
* Returns:
* 0 upon success, 0 < failure
*/
int de_confMgmtIf (de_Iface_t iface, unsigned int port,

char* mgmtIp);

/**
* de_rcvRmap
*
* This function posts a read awaiting RMAP packet
*
* Parameters:
* pkt - Pointer to RMAP packet
* pktLen - Length of RMAP packet
*
* Special Considerations:
*
* Returns:
* Length of RMAP packet received, 0 <= failure
*/
int de_rcvRmap (uint8_t *pkt, int pktLen);

 Embedded Solutions Page 7

/**
*
* de_sndRmap
*
* This function transmits the specified RMAP packet
*
* Parameters:
* pkt - Pointer to RMAP packet
* pktLen - Length of RMAP packet
*
* Special Considerations:
*
* Returns:
* Length of RMAP packet sent, 0 < failure
*/
int de_sndRmap (uint8_t *pkt, int pktLen);

/**
* de_procRmapCmd
*
* This function processes RMAP commands, and formats a reply *
* packet
*
* Parameters:
* pkt - SpaceWire packet
* pktLen - Length of input command and length of reply
* upon return.
*
* Special Considerations:
* Packet buffer is reused for reply, and it is assumed it will
* be large enough for reply packet.
*
* Returns:
* Pointer to RMAP reply.
*/
uint8_t* de_procRmapCmd (uint8_t* pkt, int* pktLen);

 Embedded Solutions Page 8

/**
* de_fmtRmapCmd
*
* This function formats and sends the specified RMAP command
*
* Parameters:
* cmd - RMAP command
* regAddr - Address of register to access
* dataLen - Data word count
* data - If a write or RMW, data to be written
* mask - If RMW, corresponding mask
* pkt - Pointer to RMAP command packet
*
* Special Considerations:
* It is assumed pkt is of at least the size of DE_MAX_RMAP_CMD
*
* Returns:
* Transaction Id of this command upon success, < 0 upon failure
*/
int de_fmtRmapCmd (uint8_t cmd, uint16_t regAddr,
 uint16_t dataLen, uint32_t data, uint32_t mask,
 uint8_t *pkt);

/**
* de_getRmapRply
*
* This function posts a read to specifed SpaceWire port awaiting
* RMAP
* reply. Received reply is validated and any read data is
* returned in buffer pointed to by parameter data.
*
* Parameters:
* transId - Expected transaction Id
* data - Pointer to data buffer for received data, NULL if
* no data expected
* dataLen - Length of buffer in 32 bit words
*
* Special Considerations:
*
* Returns:
* data length of received data upon success, < 0 upon failure
*/
int de_getRmapRply (uint16_t transId, uint32_t *data,
 uint16_t dataLen);

 Embedded Solutions Page 9

Installation
Two makefiles are delivered with RMAP package namely Makefile.svr and
Makefile.clnt. End user may require one or both. Makefiles are delivered with
production compile defines enabled.
Common defines are -DLOG, which enables logging of errors to a file in directory
executable is resident. Otherwise, errors will be displayed on stdout. Server log
file is named serverLog.txt, client log is clientLog.txt
-DVERBOSE is the other common define, and outputs more debug information.
This switch is disabled.
The server makefile has 2 additional defines. -DTRACE enables logging of all
memory/register access to the file regTrace.txt in the same directory as
executable and is enabled. -DSEM is disabled, this switch enables the mutual
exclusion method.

RMAP server and client applications
The server application resides on the device where RMAP commands are
executed and is named de_server. de_client is the client menu application
issuing RMAP commands and receiving RMAP replies.

Invocation parameters
 de_server

./de_server interface (0=SpaceWire,1=Serial,2=USB,3=Ethernet)
port(devNum or UDP port for Ethernet) [optional security key (0-255)]

Examples:

SpaceWire, port 1

./de_server 0 1

 Ethernet UDP port 50000, change security key to 55

 ./de_server 3 50000 55

Note: Security keys must be same on server and client or no reply
will be returned by server. This is a menu option on client.

de_client

./de_client interface (0=SpaceWire,1=Serial,2=USB,3=Ethernet)

port(devNum or UDP port for Ethernet) IP address if Ethernet (IPv4 dot
notation)

 Embedded Solutions Page 10

SpaceWire, port 0

./de_client 0 1

Ethernet UDP port 50000

 ./de_client 3 50000 192.168.1.75

 Embedded Solutions Page 11

Warranty and Repair
Please refer to the warranty page on our website for the current warranty offered
and options.

http://www.dyneng.com/warranty.html

Service Policy
Before returning a product for repair, verify as well as possible that the suspected
unit is at fault. Then call the Customer Service Department for a RETURN
MATERIAL AUTHORIZATION (RMA) number. Carefully package the unit, in the
original shipping carton if this is available, and ship prepaid and insured with the
RMA number clearly written on the outside of the package. Include a return
address and the telephone number of a technical contact. For out-of-warranty
repairs, a purchase order for repair charges must accompany the return.
Dynamic Engineering will not be responsible for damages due to improper
packaging of returned items. For service on Dynamic Engineering Products not
purchased directly from Dynamic Engineering contact your reseller. Products
returned to Dynamic Engineering for repair by other than the original customer
will be treated as out-of-warranty.
Out of Warranty Repairs
Out of warranty repairs will be billed on a material and labor basis. Customer
approval will be obtained before repairing any item if the repair charges will
exceed one half of the quantity one list price for that unit. Return transportation
and insurance will be billed as part of the repair and is in addition to the minimum
charge.

For Service Contact:
Customer Service Department
Dynamic Engineering
150 DuBois St. Suite C
Santa Cruz, CA 95060
831-457-8891
InterNet Address support@dyneng.com

