
DYNAMIC ENGINEERING
150 DuBois St. Suite C, Santa Cruz, CA 95060

831-457-8891 Fax 831-457-4793
http://www.dyneng.com

sales@dyneng.com
Est. 1988

hlnk_base
&

hlnk_chan

Linux Driver Documentation

Revision B
Corresponding Hardware: Revision C

10-2009-0103
Corresponding Firmware: Revision B2

http://www.dyneng.com/
mailto:dedra@dyneng.com

 Embedded Solutions Page 2 of 17

hlnk_base & hlnk_chan
Linux Device Drivers for the
ccPMC-HOTLink-Kaon1 PMC Module
2-Channel HOTLink Interface

Dynamic Engineering
150 DuBois St. Suite C
Santa Cruz, CA 95060
831-457-8891
831-457-4793 FAX

This document contains information of
proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the
recipient, by accepting this material, agrees that
the subject matter will not be copied or
reproduced, in whole or in part, nor its contents
revealed in any manner or to any person except
to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to
ensure that this manual is accurate and
complete. Still, the company reserves the right to
make improvements or changes in the product
described in this document at any time and
without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of
the application or use of the device described
herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this equipment
in a residential area is likely to cause radio
interference, in which case the user, at his own
expense, will be required to take whatever
measures may be required to correct the
interference.

Dynamic Engineering’s products are not
authorized for use as critical components in life
support devices or systems without the express
written approval of the president of Dynamic
Engineering.

Connection of incompatible hardware is likely to
cause serious damage.

©2018 by Dynamic Engineering
Other trademarks and registered trademarks are
owned by their respective manufactures.
Manual Revision B. Revised September 6, 2018

 Embedded Solutions Page 3 of 17

Table of Contents

Introduction .. 4
Note ... 4
Driver Installation .. 4
Driver Startup ... 5
IO Controls ... 6

IOCTL_HLNK_BASE_GET_INFO .. 6
IOCTL_HLNK_BASE_LOAD_PLL_DATA ... 6
IOCTL_HLNK_BASE_READ_PLL_DATA ... 6
IOCTL_HLNK_BASE_GET_STATUS .. 7
IOCTL_HLNK_CHAN_GET_INFO .. 8
IOCTL_HLNK_CHAN_SET_CONFIG ... 8
IOCTL_HLNK_CHAN_GET_CONFIG .. 9
IOCTL_HLNK_CHAN_GET_STATUS .. 9
IOCTL_HLNK_CHAN_SET_FIFO_LEVELS .. 10
IOCTL_HLNK_CHAN_GET_FIFO_LEVELS .. 10
IOCTL_HLNK_CHAN_GET_FIFO_COUNTS ... 10
IOCTL_HLNK_CHAN_RESET_FIFOS ... 10
IOCTL_HLNK_CHAN_WRITE_FIFO .. 11
IOCTL_HLNK_CHAN_READ_FIFO ... 11
IOCTL_HLNK_CHAN_WRITE_RAM .. 11
IOCTL_HLNK_CHAN_READ_RAM ... 11
IOCTL_HLNK_CHAN_GET_MSG_COUNTS ... 11
IOCTL_HLNK_CHAN_SET_TTL_CONFIG .. 12
IOCTL_HLNK_CHAN_GET_TTL_CONFIG.. 12
IOCTL_HLNK_CHAN_GET_TTL_STATUS ... 12
IOCTL_HLNK_CHAN_GET_TTL_FIFO_COUNTS .. 13
IOCTL_HLNK_CHAN_RESET_TTL_FIFOS .. 13
IOCTL_HLNK_CHAN_WRITE_TTL_FIFO ... 13
IOCTL_HLNK_CHAN_READ_TTL_FIFO... 13
IOCTL_HLNK_CHAN_WAIT_ON_INTERRUPT .. 14
IOCTL_HLNK_CHAN_ENABLE_INTERRUPT .. 14
IOCTL_HLNK_CHAN_DISABLE_INTERRUPT ... 14
IOCTL_HLNK_CHAN_FORCE_INTERRUPT .. 14
IOCTL_HLNK_CHAN_GET_ISR_STATUS .. 15
IOCTL_HLNK_CHAN_READ_DMA_COUNTS .. 15

Write .. 16
Read .. 16

Warranty and Repair ... 17
Service Policy .. 17

Out of Warranty Repairs ... 17
For Service Contact: ... 17

 Embedded Solutions Page 4 of 17

Introduction

The hlnk_base and hlnk_chan drivers are Linux device drivers for the ccPMC-HOTLink-
Kaon1 from Dynamic Engineering. The HOTLink board has a Spartan6-100 Xilinx
FPGA to implement the PCI interface, FIFOs and protocol control and status for two
HOTLink channels. There is also a programmable PLL with three clock outputs, one for
the HOTLink reference frequency (16.777216 MHz), one for the TTL 4x reference
frequency (27.52512 MHz) and the last for sampling the input TTL signal, which is 5x
the oscillator frequency (147.456 MHz). Each channel has a 32k x 32-bit receive FIFO
and a 32k x 32-bit transmit FIFO for the HOTLink interface and two 4k x 32-bit FIFOs for
the input and output TTL interface lines.

When the hlnk_base module is loaded, it interfaces with the PCI bus sub-system to
acquire the memory and interrupt resources for each HOTLink board installed. An
hlnk_bus is created for each device and two channel devices are allocated. The
interrupt is assigned and the address space partitioned for the two channel devices.
When the hlnk_chan driver is installed, it probes the hlnk bus and finds and initializes
the two channel devices for each board. It allocates read and write list memory to hold
the DMA page descriptors that are used by the hardware to perform bus-master scatter-
gather DMA.

Note

This documentation will provide information about all calls made to the drivers, and how
the drivers interact with the device for each of these calls. For more detailed
information on the hardware implementation, refer to the HOTLink user manual (also
referred to as the hardware manual). The HOTLink base and channel drivers were
developed on Linux kernel version 4.9.0-6. If you are using a different version, some
modification of the source code might be required.

Driver Installation

The source files and Makefiles for the drivers and test application are supplied in the
driver archive file PmcHOTLinkKaon_9_6_18.zip. Extract and copy the directory
structure to the computer where the driver is to be built. From the top-level directory
type “make” to build the object files then type “make install” to copy the files to the target
location (must be root for this to succeed)
(/lib/modules/$(VERSION)/kernel/drivers/char/hlnk for the driver and /usr/local/bin/ for
the test app). After installation, you can type “make clean” to remove object files and
executables.

A load_hlnk script is provided that will load the base driver, parse the /proc/devices file
for the device’s major number, count the number of entries in the /sys/bus/hlnk/devices/
directory to determine the number of boards installed, create the required number of
/dev/hlnk_base_x (where x is the zero based board number) device nodes, load the
channel driver, find that major number and create the required number of
/dev/hlnk_chan_y device nodes as well.

 Embedded Solutions Page 5 of 17

The Application Program Interface (API) for the drivers and relevant structures and bit
defines for the control/status registers on the ccPMC-HOTLink-Kaon1 are defined in the
C header files hlnk_base_api.h and hlnk_chan_api.h. The user_app source code will
provide examples of how to use the driver calls to control the hardware.

Driver Startup

Install the hardware and boot the computer. After the drivers have been installed run
the load_hlnk script to start the drivers and create the device interface nodes.

Handles can be opened to a specific board by using the open() function call and
passing in the appropriate device names.

Below is example code for opening handles for device dev_num.

#typedef HANDLE

#define INPUT_SIZE 80

HANDLE hhlnk_base;

HANDLE hhlnk_chan[HLNK_BASE_NUM_CHANNELS];

char Name[INPUT_SIZE];

int i;

int dev_num;

int chan_num;

do {

 printf("\nEnter target board number (starting with zero): \n");

 restore_term();

 scanf("%d", &dev_num);

 init_term();

 if (dev_num < 0 || dev_num > NUM_HLNK_DEVICES) {

 printf("\nTarget board number %d out of range!\n", dev_num);

 }

} while (dev_num < 0 || dev_num > NUM_HLNK_DEVICES);

sprintf(Name, "/dev/hlnk_base_%d", dev_num);

hhlnk_base = open(Name , O_RDWR);

if (hhlnk_base < 2) {

 printf("\n%sFAILED to open!\n", Name);

 restore_term();

 return 1;

}

chan_num = dev_num * HLNK_BASE_NUM_CHANNELS

for (i = 0; i < HLNK_BASE_NUM_CHANNELS; i++) {

 sprintf(Name, "/dev/hlnk_chan_%d", chan_num + i);

 hhlnk_chan[i] = open(Name , O_RDWR);

 if (hhlnk_chan[i] < 2) {

 printf("\n%sFAILED to open!\n", Name);

 restore_term();

 return 1;

 }

}

menu();

 Embedded Solutions Page 6 of 17

IO Controls

The driver uses ioctl() calls to configure the device and obtain status. The parameters
passed to the ioctl() function include the handle obtained from the open() call, an integer
command number defined in the API header files and an optional parameter used to
pass data in and/or out of the device. The ioctl commands defined for the PMC-
HOTLink are listed below.

The ioctl() calls defined for the hlnk_base driver are described below:

IOCTL_HLNK_BASE_GET_INFO

Function: Returns the Driver revision, Design ID, Design revision, Switch value, Instance
number, and PLL device ID.
Input: None
Output: HLNK_BASE_DRIVER_DEVICE_INFO structure
Notes: Switch value is the configuration of the on-board dip-switch that has been set by
the user (see the board silk screen for bit position and polarity). The PLL device ID is
the device address of the PLL device. This value, which is set at the factory, is usually
0x69 but may alternatively be 0x6A. See below for the definition of
HLNK_BASE_DRIVER_DEVICE_INFO.

typedef struct _HLNK_BASE_DRIVER_DEVICE_INFO {

 unsigned char DriverRev;

 unsigned char DesignId;

 unsigned char DesignRev;

 unsigned char MinorRev;

 unsigned char SwitchValue;

 unsigned char PllDeviceId;

 unsigned int InstanceNum;

} HLNK_BASE_DRIVER_DEVICE_INFO, *PHLNK_BASE_DRIVER_DEVICE_INFO;

IOCTL_HLNK_BASE_LOAD_PLL_DATA
Function: Loads the internal registers of the PLL.
Input: HLNK_BASE_PLL_DATA structure
Output: None
Notes: The PLL internal register data is loaded into the HLNK_BASE_PLL_DATA
structure in an array of 40 bytes. Appropriate values for this array can be derived from
.jed files created by the CyberClock utility from Cypress Semiconductor.

typedef struct _HLNK_BASE_PLL_DATA {

 unsigned char Data[PLL_MESSAGE_SIZE];

} HLNK_BASE_PLL_DATA, *PHLNK_BASE_PLL_DATA;

IOCTL_HLNK_BASE_READ_PLL_DATA
Function: Returns the contents of the PLL’s internal registers
Input: None
Output: HLNK_BASE_PLL_DATA structure
Notes: The register data is output in the HLNK_BASE_PLL_DATA structure in an array
of 40 bytes.

 Embedded Solutions Page 7 of 17

IOCTL_HLNK_BASE_GET_STATUS
Function: Returns the value of the status register and clears any latched bits
Input: None
Output: Status register value (unsigned int)
Notes: Returns the real-time values of the status bits and clears the bits in
BASE_STAT_PLL_LATCH_MASK if they are set.

/* Status bit definitions */

#define BASE_STAT_INT0_ACTV 0x00000001

#define BASE_STAT_INT1_ACTV 0x00000002

#define BASE_STAT_PLLREF_LCKD 0x00000040

#define BASE_STAT_HLCLK_LCKD 0x00000080

#define BASE_STAT_PLL_TX_FF_MT 0x00000100

#define BASE_STAT_PLL_TX_FF_FL 0x00000200

#define BASE_STAT_PLL_TX_FF_VLD 0x00000400

#define BASE_STAT_PLL_RX_FF_MT 0x00001000

#define BASE_STAT_PLL_RX_FF_FL 0x00002000

#define BASE_STAT_PLL_RX_FF_VLD 0x00004000

#define BASE_STAT_PLL_RDY 0x00010000

#define BASE_STAT_PLL_DONE 0x00020000

#define BASE_STAT_PLL_ERROR 0x00040000

#define BASE_STAT_CORE_REV_MASK 0x0FF00000

#define BASE_STAT_PLL_FIFO_MASK (BASE_STAT_PLL_TX_FF_MT | BASE_STAT_PLL_TX_FF_FL | BASE_STAT_PLL_TX_FF_VLD |\

 BASE_STAT_PLL_RX_FF_MT | BASE_STAT_PLL_RX_FF_FL | BASE_STAT_PLL_RX_FF_VLD)

#define BASE_STAT_PLL_LATCH_MASK (BASE_STAT_PLL_DONE | BASE_STAT_PLL_ERROR)

#define BASE_STAT_MASK (BASE_STAT_INT0_ACTV | BASE_STAT_HLCLK_LCKD | BASE_STAT_PLL_FIFO_MASK |\

 BASE_STAT_INT1_ACTV | BASE_STAT_PLLREF_LCKD | BASE_STAT_PLL_LATCH_MASK |\

 BASE_STAT_PLL_RDY | BASE_STAT_CORE_REV_MASK)

 Embedded Solutions Page 8 of 17

The ioctl() calls defined for the hlnk_chan driver are described below:

IOCTL_HLNK_CHAN_GET_INFO

Function: Returns the channel number driver revision as well as the board instance number,
design ID, design revision and minor revision passed in from the base driver.
Input: None
Output: HLNK_CHAN_DRIVER_DEVICE_INFO structure
Notes: See the definition of HLNK_CHAN_DRIVER_DEVICE_INFO below.

/* Driver/Device information */

typedef struct _HLNK_CHAN_DRIVER_DEVICE_INFO {

 unsigned char DriverRev; // Channel driver revision

 unsigned int InstanceNum; // Board instance number from base driver

 unsigned char Channel; // Channel number

 unsigned char DesignId; // From base driver

 unsigned char DesignRev; // From base driver

 unsigned char MinorRev; // From base driver

} HLNK_CHAN_DRIVER_DEVICE_INFO, *PHLNK_CHAN_DRIVER_DEVICE_INFO;

IOCTL_HLNK_CHAN_SET_CONFIG
Function: Writes the channel configuration parameters.
Input: HLNK_CHAN_CONFIG structure
Output: None
Notes: See below for the definitions of the structures used in this call.

 /* Channel Interrupt Enables */

typedef struct _HLNK_CHAN_INTS {

 BOOLEAN TxAmtInt; // Transmit FIFO almost empty interrupt

 BOOLEAN RxAflInt; // Receive FIFO almost full interrupt

 BOOLEAN RxOvflInt; // Receive FIFO overflow interrupt

} HLNK_CHAN_INTS, *PHLNK_CHAN_INTS;

 /* Channel DMA priority */

typedef enum _HLNK_DMA_PRMPT {

 HLNK_NONE, // No priority

 HLNK_READ, // Read DMA has priority

 HLNK_WRITE, // Write DMA has priority

 HLNK_RDWR // Read and Write DMA have priority

} HLNK_DMA_PRMPT, *PHLNK_DMA_PRMPT;

 /* Channel Configuration */

typedef struct _HLNK_CHAN_CONFIG {

 BOOLEAN TxEnable; // Enable HOTLink transmitter

 BOOLEAN RxEnable; // Enable HOTLink receiver

 BOOLEAN FifoTestEn; // Enables auto tx->rx FIFO transfer

 BOOLEAN IoTestEn; // Enables tx->rx I/O data transfer

 BOOLEAN TxOutEn; // Enable transmitter output

 BOOLEAN TxBitEn; // Built-in-test enable (sends test pattern)

 BOOLEAN TxLdEn; // Enables loading of test data

 BOOLEAN TxSndFrm; // Forces sending a data-frame without trigger

 BOOLEAN TtlCmndEn; // Enables TTL I/F to trigger sending a data-frame

 BOOLEAN RxInASel; // Selects rx input '1'=External, '0'=Local Tx

 BOOLEAN RxBitEn; // Built-in-test enable (verifies test pattern)

 BOOLEAN RxReframe; // Manually initiate receiver data reframe

 BOOLEAN ForceRfrm; // Force reframe signal high

 HLNK_CHAN_INTS IntConfig; // Interrupt condition enables

 HLNK_DMA_PRMPT DmaPriority;// DMA preemption control

} HLNK_CHAN_CONFIG, *PHLNK_CHAN_CONFIG;

 Embedded Solutions Page 9 of 17

IOCTL_HLNK_CHAN_GET_CONFIG
Function: Returns the channel’s control configuration.
Input: None
Output: HLNK_CHAN_CONFIG structure
Notes: Returns the parameter values written in the previous call.

IOCTL_HLNK_CHAN_GET_STATUS
Function: Returns the channel’s status bit values and clears the latched bits.
Input: None
Output: Value of channel status register (unsigned integer)
Notes: The bits in CHAN_STAT_LATCH_MASK will be cleared if they are set when the
status is read.

 /* Status bit definitions */

#define CHAN_STAT_TX_FF_MT 0x00000001

#define CHAN_STAT_TX_FF_AMT 0x00000002

#define CHAN_STAT_TX_FF_FL 0x00000004

#define CHAN_STAT_TX_FF_VLD 0x00000008

#define CHAN_STAT_RX_FF_MT 0x00000010

#define CHAN_STAT_RX_FF_AFL 0x00000020

#define CHAN_STAT_RX_FF_FL 0x00000040

#define CHAN_STAT_RX_FF_VLD 0x00000080

#define CHAN_STAT_TX_AMT_INT 0x00000100

#define CHAN_STAT_RX_AFL_INT 0x00000200

#define CHAN_STAT_RX_OVFL 0x00000400

#define CHAN_STAT_RX_SYM_ERR 0x00000800

#define CHAN_STAT_WR_DMA_INT 0x00001000

#define CHAN_STAT_RD_DMA_INT 0x00002000

#define CHAN_STAT_WR_DMA_ERR 0x00004000

#define CHAN_STAT_RD_DMA_ERR 0x00008000

#define CHAN_STAT_WR_DMA_RDY 0x00010000

#define CHAN_STAT_RD_DMA_RDY 0x00020000

#define CHAN_STAT_RX_DATA_RDY 0x00040000

#define CHAN_STAT_TX_DATA_READ 0x00080000

#define CHAN_STAT_TX_UNDRN_ERR 0x00100000

#define CHAN_STAT_TX_COUNT_ERR 0x00200000

#define CHAN_STAT_RX_FRAME_ERR 0x00400000

#define CHAN_STAT_RX_COUNT_ERR 0x00800000

#define CHAN_STAT_TX_FRAME_DN 0x01000000

#define CHAN_STAT_RX_FRAME_DN 0x02000000

#define CHAN_STAT_RX_ACTIVE 0x04000000

#define CHAN_STAT_RX_SYNCHED 0x08000000

#define CHAN_STAT_RX_UDEF_CHAR 0x10000000

#define CHAN_STAT_RX_DISP_ERR 0x20000000

#define CHAN_STAT_LOC_INT 0x40000000

#define CHAN_STAT_INT_ACTIVE 0x80000000

#define CHAN_STAT_FIFO_MASK (CHAN_STAT_TX_FF_MT | CHAN_STAT_TX_FF_FL | CHAN_STAT_TX_FF_AMT |\

 CHAN_STAT_TX_FF_VLD | CHAN_STAT_RX_FF_MT | CHAN_STAT_RX_FF_AFL |\

 CHAN_STAT_RX_FF_VLD | CHAN_STAT_RX_FF_FL)

#define CHAN_STAT_LATCH_MASK (CHAN_STAT_RD_DMA_ERR | CHAN_STAT_TX_FRAME_DN | CHAN_STAT_TX_UNDRN_ERR |\

 CHAN_STAT_WR_DMA_ERR | CHAN_STAT_RX_FRAME_DN | CHAN_STAT_TX_COUNT_ERR |\

 CHAN_STAT_RX_SYM_ERR | CHAN_STAT_RX_DATA_RDY | CHAN_STAT_RX_FRAME_ERR |\

 CHAN_STAT_RX_AFL_INT | CHAN_STAT_TX_DATA_READ | CHAN_STAT_RX_COUNT_ERR |\

 CHAN_STAT_TX_AMT_INT | CHAN_STAT_RX_UDEF_CHAR | CHAN_STAT_RX_DISP_ERR |\

 CHAN_STAT_RX_OVFL)

#define CHAN_STAT_MASK (CHAN_STAT_WR_DMA_INT | CHAN_STAT_WR_DMA_RDY | CHAN_STAT_LOC_INT |\

 CHAN_STAT_RD_DMA_INT | CHAN_STAT_RD_DMA_RDY | CHAN_STAT_FIFO_MASK |\

 CHAN_STAT_RX_SYNCHED | CHAN_STAT_LATCH_MASK | CHAN_STAT_RX_ACTIVE |\

 CHAN_STAT_INT_ACTIVE)

 Embedded Solutions Page 10 of 17

IOCTL_HLNK_CHAN_SET_FIFO_LEVELS
Function: Sets the transmitter almost empty and receiver almost full levels for the channel.
Input: HLNK_CHAN_FIFO_LEVELS structure
Output: None
Notes: These values are initialized to the default values ⅛ transmit FIFO size and ⅞
receive FIFO size respectively when the driver initializes. The FIFO counts are
compared to these levels to determine the value of the CHAN_STAT_TX_FF_AMT and
CHAN_STAT_RX_FF_AFL status bits. Also, if read and/or write DMA priority is
selected, these levels are used to determine at what point DMA preemption for an input
or output DMA channel will take effect.

/* FIFO programmable TX almost empty RX almost full levels */

typedef struct _HLNK_CHAN_FIFO_LEVELS {

 unsigned int AlmostFull;

 unsigned int AlmostEmpty;

} HLNK_CHAN_FIFO_LEVELS, *PHLNK_CHAN_FIFO_LEVELS;

IOCTL_HLNK_CHAN_GET_FIFO_LEVELS
Function: Returns the transmitter almost empty and receiver almost full levels for the channel.
Input: None
Output: HLNK_CHAN_FIFO_LEVELS structure
Notes: Returns the values set in the previous call.

IOCTL_HLNK_CHAN_GET_FIFO_COUNTS
Function: Returns the number of data words in the transmitter and receiver FIFOs.
Input: None
Output: HLNK_CHAN_FIFO_COUNTS structure
Notes: There is one pipe-line latch for the transmit FIFO data and four for the receive
FIFO data. These are counted in the FIFO counts. That means the transmit count can
be a maximum of 32,769 32-bit words and the receive count can be a maximum of
32,772 32-bit words.

/* FIFO word counts */

typedef struct _HLNK_CHAN_FIFO_COUNTS {

 unsigned int TxCount;

 unsigned int RxCount;

} HLNK_CHAN_FIFO_COUNTS, *PHLNK_CHAN_FIFO_COUNTS;

IOCTL_HLNK_CHAN_RESET_FIFOS
Function: Resets one or both or the channel’s HOTLink FIFOs.
Input: HLNK_CHAN_FIFO_SEL enumeration type
Output: None
Notes: Resets the transmitter or receiver FIFO or both depending on the input
parameter selection. See the definition of HLNK_CHAN_FIFO_SEL below.

 /* FIFO select (used by FIFO reset) */

typedef enum _HLNK_CHAN_FIFO_SEL {

 HLNK_TX,

 HLNK_RX,

 HLNK_BOTH

} HLNK_CHAN_FIFO_SEL, *PHLNK_CHAN_FIFO_SEL;

 Embedded Solutions Page 11 of 17

IOCTL_HLNK_CHAN_WRITE_FIFO
Function: Writes a 32-bit data-word to the transmit FIFO.
Input: FIFO word (unsigned integer)
Output: None
Notes: Used to make single-word accesses to the transmit FIFO instead of using DMA.

IOCTL_HLNK_CHAN_READ_FIFO
Function: Returns a 32-bit data word from the receive FIFO.
Input: None
Output: FIFO word (unsigned integer)
Notes: Used to make single-word accesses from the receive FIFO instead of using
DMA.

IOCTL_HLNK_CHAN_WRITE_RAM
Function: Writes a 32-bit data-word to the format RAM.
Input: HLNK_CHAN_MEM_WORD_WRITE structure
Output: None
Notes: Used to write data-frame format information to the format RAM.

typedef struct _HLNK_CHAN_MEM_WORD_WRITE {

 unsigned int Address;

 unsigned int Data;

} HLNK_CHAN_MEM_WORD_WRITE, *PHLNK_CHAN_MEM_WORD_WRITE;

IOCTL_HLNK_CHAN_READ_RAM
Function: Reads a 32-bit frame format word from the format RAM.
Input: RAM word address (unsigned integer)
Output: RAM format word (unsigned integer)
Notes: A union is used to contain the input and output parameters. Used to read format
information from the specified address in the format RAM.

typedef union _HLNK_CHAN_MEM_WORD_READ {

 unsigned int address;

 unsigned int data;

} HLNK_CHAN_MEM_WORD_READ, *PHLNK_CHAN_MEM_WORD_READ;

IOCTL_HLNK_CHAN_GET_MSG_COUNTS
Function: Reads and returns the byte counts from the last message sent/received.
Input: None
Output: HLNK_CHAN_MSG_COUNTS
Notes: See the definition of HLNK_CHAN_MSG_COUNTS below.

typedef struct _HLNK_CHAN_MSG_COUNTS {

 unsigned int TxMsgCount;

 unsigned int RxMsgCount;

} HLNK_CHAN_MSG_COUNTS, *PHLNK_CHAN_MSG_COUNTS;

 Embedded Solutions Page 12 of 17

IOCTL_HLNK_CHAN_SET_TTL_CONFIG
Function: Writes the channel TTL configuration parameters.
Input: HLNK_CHAN_TTL_CONFIG structure
Output: None
Notes: See the definition of HLNK_CHAN_TTL_CONFIG below.

typedef struct _HLNK_CHAN_TTL_CONFIG {

 BOOLEAN RxTtlEn; // Receive TTL data

 BOOLEAN TxTtlEn; // Load and send TTL data

 BOOLEAN TtlFifoTestEn; // Enables auto tx->rx FIFO transfer

 BOOLEAN TtlRxDnIntEn; // Enables RX done interrupt

} HLNK_CHAN_TTL_CONFIG, *PHLNK_CHAN_TTL_CONFIG;

IOCTL_HLNK_CHAN_GET_TTL_CONFIG
Function: Returns the channel’s TTL control configuration.
Input: None
Output: HLNK_CHAN_TTL_CONFIG structure
Notes: Returns the values set in the previous call. See the definition of
HLNK_CHAN_TTL_CONFIG above.

IOCTL_HLNK_CHAN_GET_TTL_STATUS
Function: Returns the channel’s TTL status register value.
Input: None
Output: Value of channel TTL status register (unsigned integer)
Notes: The bits in CHAN_TTL_STAT_LAT_MASK will be cleared, if they were set when
this call was made.

#define CHAN_TTL_STAT_TX_FF_MT 0x00000001

#define CHAN_TTL_STAT_TX_FF_AMT 0x00000002

#define CHAN_TTL_STAT_TX_FF_FL 0x00000004

#define CHAN_TTL_STAT_TX_FF_VLD 0x00000008

#define CHAN_TTL_STAT_RX_FF_MT 0x00000010

#define CHAN_TTL_STAT_RX_FF_AFL 0x00000020

#define CHAN_TTL_STAT_RX_FF_FL 0x00000040

#define CHAN_TTL_STAT_RX_FF_VLD 0x00000080

#define CHAN_TTL_STAT_RX_BIT_ERR 0x00000100

#define CHAN_TTL_STAT_RX_FF_OVFL 0x00000200

#define CHAN_TTL_STAT_RX_DONE 0x00000400

#define CHAN_TTL_STAT_RX_TRIG_ERR 0x00000800

#define CHAN_TTL_STAT_TX_FF_MASK (CHAN_TTL_STAT_TX_FF_FL | CHAN_TTL_STAT_TX_FF_VLD | CHAN_TTL_STAT_TX_FF_MT |\

 CHAN_TTL_STAT_TX_FF_AMT)

#define CHAN_TTL_STAT_RX_FF_MASK (CHAN_TTL_STAT_RX_FF_FL | CHAN_TTL_STAT_RX_FF_VLD | CHAN_TTL_STAT_RX_FF_MT |\

 CHAN_TTL_STAT_RX_FF_AFL)

#define CHAN_TTL_STAT_FF_MASK (CHAN_TTL_STAT_TX_FF_MASK | CHAN_TTL_STAT_RX_FF_MASK)

#define CHAN_TTL_STAT_LAT_MASK (CHAN_TTL_STAT_RX_BIT_ERR | CHAN_TTL_STAT_RX_DONE |\

 CHAN_TTL_STAT_RX_FF_OVFL | CHAN_TTL_STAT_RX_TRIG_ERR)

#define CHAN_TTL_STAT_MASK (CHAN_TTL_STAT_FF_MASK | CHAN_TTL_STAT_LAT_MASK)

 Embedded Solutions Page 13 of 17

IOCTL_HLNK_CHAN_GET_TTL_FIFO_COUNTS
Function: Returns the number of data words in the transmitter and receiver TTL FIFOs.
Input: None
Output: HLNK_CHAN_FIFO_COUNTS structure
Notes: There is one pipe-line latch for the transmitter and receiver FIFO. These are
counted in the FIFO counts. That means the transmitter and receiver count can be a
maximum of 4097 32-bit words.

 /* FIFO word counts */

typedef struct _HLNK_CHAN_FIFO_COUNTS {

 unsigned int TxCount;

 unsigned int RxCount;

} HLNK_CHAN_FIFO_COUNTS, *PHLNK_CHAN_FIFO_COUNTS;

IOCTL_HLNK_CHAN_RESET_TTL_FIFOS
Function: Resets one or both TTL FIFOs for the channel.
Input: HLNK_CHAN_FIFO_SEL enumeration type
Output: None
Notes: Resets the transmitter or receiver TTL FIFO or both depending on the input
parameter selection.

 /* FIFO select (used by FIFO reset) */

typedef enum _HLNK_CHAN_FIFO_SEL {

 HLNK_TX,

 HLNK_RX,

 HLNK_BOTH

} HLNK_CHAN_FIFO_SEL, *PHLNK_CHAN_FIFO_SEL;

IOCTL_HLNK_CHAN_WRITE_TTL_FIFO
Function: Writes a 32-bit data-word to the transmitter TTL FIFO.
Input: FIFO word (unsigned integer)
Output: None
Notes: Used to write data to the transmitter TTL FIFO.

IOCTL_HLNK_CHAN_READ_TTL_FIFO
Function: Reads and returns a 32-bit data word from the receiver TTL FIFO.
Input: None
Output: FIFO word (unsigned integer)
Notes: Used to read data from the receiver TTL FIFO.

 Embedded Solutions Page 14 of 17

IOCTL_HLNK_CHAN_WAIT_ON_INTERRUPT
Function: Inserts the calling process into the interrupt wait queue until an interrupt
occurs.
Input: Time-out value in jiffies (unsigned integer)
Output: None
Notes: This call is used to implement a user defined interrupt service routine. It will
return when an interrupt occurs or when the delay time specified expires. If the delay is
set to zero, the call will wait indefinitely. The delay time is dependent on the platform
setting for jiffy, which could be anything from 10 milliseconds to less than 1 millisecond.
The DMA interrupts do not use this mechanism; they are controlled automatically by the
driver.

IOCTL_HLNK_CHAN_ENABLE_INTERRUPT

Function: Enables the channel master interrupt.
Input: None
Output: None
Notes: This command must be run to allow the board to respond to user interrupts.
The master interrupt enable is disabled in the driver interrupt service routine when a
user interrupt is serviced. Therefore this command must be run to re-enable interrupts
after an interrupt occurs.

IOCTL_HLNK_CHAN_DISABLE_INTERRUPT

Function: Disables the channel master interrupt.
Input: None
Output: None
Notes: This call is used when user interrupt processing is no longer desired.

IOCTL_HLNK_CHAN_FORCE_INTERRUPT

Function: Causes a system interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the PCI bus if the channel master
interrupt is enabled. This IOCTL is used for development, to test interrupt processing.

 Embedded Solutions Page 15 of 17

IOCTL_HLNK_CHAN_GET_ISR_STATUS

Function: Returns the interrupt status that was read in the ISR from the last user
interrupt.
Input: None
Output: HLNK_CHAN_ISR_STAT structure
Notes: The HlStat and TtlStat fields are the status values that were read in the last
interrupt service routine that serviced an enabled user interrupt. The HlNew and TtlNew
fields are true if their respective interrupts occurred and updated the values since they
were last read. The TimedOut field of the structure will be true if a time-out value was
set in IOCTL_HLNK_CHAN_WAIT_ON_INTERRUPT and was exceeded. The
interrupts that deal with the DMA transfers do not affect these values.

 /* Interrupt status from ISR */

typedef struct _HLNK_CHAN_ISR_STAT {

 unsigned int HlStat; // HOTLink status read in the ISR

 unsigned int TtlStat; // TTL staus read in the ISR

 BOOLEAN HlNew; // True if status has changed since the last get ISR status call

 BOOLEAN TtlNew; // True if TTL status has changed since the last get ISR status call

 BOOLEAN TimedOut; // True if interrupt wait time was exceeded

} HLNK_CHAN_ISR_STAT, *PHLNK_CHAN_ISR_STAT;

IOCTL_HLNK_CHAN_READ_DMA_COUNTS
Function: Returns the number of words transferred in the last input and output DMA.
Input: None
Output: HLNK_CHAN_DMA_COUNTS
Notes: These counts will remain valid even if the board is reset. This allows the user to
get information about a DMA transfer that was hung or failed to complete.

typedef struct _HLNK_CHAN_DMA_COUNTS {

 unsigned int WriteCount;

 unsigned int ReadCount;

} HLNK_CHAN_DMA_COUNTS, *PHLNK_CHAN_DMA_COUNTS;

 Embedded Solutions Page 16 of 17

Write

HOTLink transmit data is written to the device using the write command. A handle to
the device, a pointer to a pre-allocated buffer that contains the data to write and an
unsigned integer that represents the number of bytes of data to write are passed to the
write call. The driver will obtain physical addresses to the pages containing the data
and will set-up a list of page descriptors in its list memory. The driver writes the
physical address of the first list entry to the device’s Write DMA pointer register. This
triggers the hardware to perform a bus-master scatter-gather DMA to the device to
transfer the data.

Read

HOTLink received data is read from the device using the read command. A handle to
the device, a pointer to a pre-allocated buffer that will contain the data that is read from
the device and an unsigned integer that represents the number of bytes of data to read
are passed to the read call. The driver will obtain physical addresses to the buffer
memory pages and will set-up a list of page descriptors in its list memory. The driver
will write the physical address of the first list entry to the device’s Read DMA pointer
register. This triggers the hardware to perform a bus-master scatter-gather DMA from
the device to transfer the data.

 Embedded Solutions Page 17 of 17

Warranty and Repair

Dynamic Engineering warrants this product to be free from defects under normal use
and service and in its original, unmodified condition, for a period of one year from the
time of purchase. If the product is found to be defective within the terms of this
warranty, Dynamic Engineering's sole responsibility shall be to repair, or at Dynamic
Engineering's sole option to replace, the defective product.

Dynamic Engineering's warranty of and liability for defective products is limited to that
set forth herein. Dynamic Engineering disclaims and excludes all other product
warranties and product liability, expressed or implied, including but not limited to any
implied warranties of merchantability or fitness for a particular purpose or use, liability
for negligence in manufacture or shipment of product, liability for injury to persons or
property, or for any incidental or consequential damages.

Dynamic Engineering’s products are not authorized for use as critical components in life
support devices or systems without the express written approval of the president of
Dynamic Engineering.

Service Policy

Before returning a product for repair, verify as well as possible that the driver is at fault.
The driver has gone through extensive testing and in most cases it will be “cockpit error”
rather than an error with the driver. When you are sure or at least willing to pay to have
someone help then call the Customer Service Department and arrange to speak with an
engineer. We will work with you to determine the cause of the issue. If the issue is one
of a defective driver we will correct the problem and provide an updated module(s) to
you [no cost]. If the issue is of the customer’s making [anything that is not the driver]
the engineering time will be invoiced to the customer. Pre-approval may be required in
some cases depending on the customer’s invoicing policy.

Out of Warranty Repairs

Out of warranty support will be billed. An open PO will be required.

For Service Contact:

Customer Service Department
Dynamic Engineering
150 DuBois St. Suite C
Santa Cruz, CA 95060
831-457-8891
831-457-4793 Fax
support@dyneng.com

All information provided is Copyright Dynamic Engineering.

mailto:support@dyneng.com

