
DYNAMIC ENGINEERING
435 Park Dr., Ben Lomond, Calif. 95005
831-336-8891 Fax 831-336-3840

 http://www.dyneng.com
sales@dyneng.com

 Est. 1988

User Manual

PCI LVDS 8T Driver Documentation

Revision A
Corresponding Hardware: Revision C

10-2001-0903

 Page 2 Electronics Design • Manufacturing Services

PCI LVDS 8T
PCI based 8 channel LVDS
transmitter card

Dynamic Engineering
435 Park Drive
Ben Lomond, CA 95005
831-336-8891
831-336-3840 FAX

This document contains information of
proprietary interest to Dynamic Engineering.
It has been supplied in confidence and the
recipient, by accepting this material, agrees
that the subject matter will not be copied or
reproduced, in whole or in part, nor its
contents revealed in any manner or to any
person except to meet the purpose for which
it was delivered.

Dynamic Engineering has made every effort
to ensure that this manual is accurate and
complete. Still, the company reserves the
right to make improvements or changes in
the product described in this document at
any time and without notice. Furthermore,
Dynamic Engineering assumes no liability
arising out of the application or use of the
device described herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this
equipment in a residential area is likely to
cause radio interference, in which case the
user, at his own expense, will be required to
take whatever measures may be required to
correct the interference.

Dynamic Engineering’s products are not
authorized for use as critical components in
life support devices or systems without the
express written approval of the president of
Dynamic Engineering.

Connection of incompatible hardware is likely
to cause serious damage.

©2002 by Dynamic Engineering.
Other trademarks and registered trademarks are owned by their
respective manufactures.
Manual Revision A. Revised April 11, 2002

 Page 3 Electronics Design • Manufacturing Services

Table of Contents

Introduction 5

Authors Note 5

Driver Installation 5

Driver Startup 6

IO Controls 6
IOCTL_LV8T_GET_STATUS 7
IOCTL_LV8T_SET_MEMORY_CONFIG 7
IOCTL_LV8T_GET_MEMORY_CONFIG 7
IOCTL_LV8T_SET_CHANNEL_CONFIG 7
IOCTL_LV8T_GET_CHANNEL_CONFIG 8
IOCTL_LV8T_SET_TIMING_CONFIG 8
IOCTL_LV8T_GET_ TIMING_CONFIG 9
IOCTL_LV8T_SET_LOCAL_START 9
IOCTL_LV8T_SET_MASTER_START 9
IOCTL_LV8T_START_READBACK_MODE 9
IOCTL_LV8T_STOP_READBACK_MODE 10
IOCTL_LV8T_GET_TX_DATA 10
IOCTL_LV8T_START_SLAVEWRITE_MODE 10
IOCTL_LV8T_STOP_SLAVEWRITE_MODE 10
IOCTL_LV8T_PUT_RAM_DATA 11
IOCTL_LV8T_SET_WRITE_OFFSET 11
IOCTL_LV8T_GET_WRITE_OFFSET 11
IOCTL_LV8T_RESET_ALL_OUTPUT_FIFOS 11

Write 12
DMA mode 12

WARRANTY AND REPAIR 13

Service Policy 14
Out of Warranty Repairs 14

For Service Contact: 14

 Page 4 Electronics Design • Manufacturing Services

List of Figures

no figures in this document

 Page 5 Electronics Design • Manufacturing Services

Introduction
The LV8T driver is a Windows NT driver for the PCI LVDS 8T board from
Dynamic Engineering. This driver can control up to 10 boards in a system.
If more boards are required please contact Dynamic Engineering. The PCI
LVDS 8T board sends 8 channels of LVDS data. A separate “Device
Object” controls each LVDS channel, and a separate handle references
each Device Object. IO Control calls (IOCTLs) are used to configure the
hardware and the driver. WriteFile() calls are used to load LVDS data into
the device. IOCTLs refer to a single Device Object instance, and therefore
refer to a single channel on a device (except the
IOCTL_LV8T_RESET_ALL_OUTPUT_FIFOS call, which affects all 8 channels
on a given board).

Handles can be opened to specific channels on the device in Win32 by
using the CreateFile() function call and passing in a Symbolic Link name. A
Symbolic Link is the name of the device recognized by Windows. For the
LV8T driver, Symbolic Link names are formed as LV8Tx_n where x indicates
the zero based board number and n indicates the zero based channel
number on the board. E.g. the second channel on the third board is
LV8T2_1.

WriteFile() is used to write LVDS data to the SDRAM space associated with
a specific channel. The channel is specified by passing the appropriate
handle opened via the CreateFile() function call. The driver writes directly
into one of two SDRAM banks on the device. WriteFile() calls are limited to
channels 0 and 4 on the device, depending on which bank is to be
accessed. Channel 0 accesses the first SDRAM bank, which is used to
store data for output channels 0 – 3. Channel 4 accesses the second
SDRAM bank, used for storing data for output channels 4 – 7.

Authors Note
This documentation is provided to supplement the PCI_LVDS_8T [LV8T]
hardware manual. This documentation will provide information about all
calls made to the driver, and how the driver interacts with the device for
each of these calls.

Driver Installation
There are several files provided in each driver drop. These files include
lv8t.sys, lv8t.reg, ddlv8t.h, lv8ttest.exe, and driver source files.

The lv8t.sys file is the binary driver file. In order to install the driver, place
this file in your Winnt\system32\drivers directory.

 Page 6 Electronics Design • Manufacturing Services

The lv8t.reg file is the Windows NT registry entry file. This file contains the
modifications to the Windows registry required to allow Windows to
recognize the driver. In order to install the driver, double click on this file
(or right click and select the Merge option in the context menu). This will
merge the LV8T entries required by the driver into the Windows NT
registry. Windows must be restarted after merging this file into the
registry for the driver to work.

The ddlv8t.h file is the C header file that defines the Application Interface
(API) to the driver. This file is required at compile time by any application
that wishes to interface with the PCI LVDS 8T device. It is not needed by
the driver installation.

The lv8ttest.exe file is a sample Windows NT console application that
makes calls into the LV8T driver. It is not required during the driver
installation.

Driver Startup
There are several tasks the LV8T driver must do when it is started. It
must scan all possible PCI buses to detect every PCI LVDS 8T device in the
system. It must create 8 “Device Objects” for every board it finds, one per
channel. It must initialize each of these Device Objects. It must register
callbacks (Interrupt Service Routines and Deferred Procedure Calls) with
Windows. Finally it must initialize the PCI LVDS 8T board.

IO Controls
The driver uses IO Control calls (IOCTLs) to configure the device. IOCTLs
refer to a single Device Object in the driver, which controls a single
channel. IOCTLs are called using the Win32 function DeviceIoControl(), and
passing in the handle to the device opened with CreateFile(). IOCTLs
generally have input parameters, output parameters, or both. Often a
custom structure is used.

 Page 7 Electronics Design • Manufacturing Services

IOCTL_LV8T_GET_STATUS
Function: Returns the status of a specified channel.
Input: None
Output: LV8T_STATUS
Notes: Returns Status information for a given channel obtained from the
DMA Status register, the Address Generator Address A and Address B
registers, and the Tx Status register. The LV8T_STATUS structure
returned contains two ULONG fields: CardID and ChannelState. The CardID
field will contain the settings of the user-defined dip-switch on the board.
ChannelState will contain various information about the activity of the
channel and the state of the FIFOs. See the definition of LV8T_STATUS for
more information.

IOCTL_LV8T_SET_MEMORY_CONFIG
Function: Sets the specified channel’s memory configuration.
Input: LV8T_MEMORY
Output: None
Notes: Sets the Address Generator memory configuration for a given
channel. The LV8T_MEMORY input structure contains four ULONG fields:
Add_A, Add_B, Add_C, and Add_D; a UCHAR field: LoopCount; and two
boolean fields: LoopEnable and Continuous. The four address fields specify
the beginning and end of memory regions used in the different addressing
modes for the specified channel. The LoopCount field specifies the number
of loops performed in loop mode, which is enabled by the LoopEnable field.
The Continuous field enables continuous operation where the channel starts
over upon reaching the end of the specified memory operation. See the
PCI LVDS 8T manual for more information.

IOCTL_LV8T_GET_MEMORY_CONFIG
Function: Retrieves the specified channel’s memory configuration.
Input: None.
Output: LV8T_MEMORY
Notes: Retrieves the Address Generator memory configuration for the
specified channel. The LV8T_MEMORY output structure is described
above.

IOCTL_LV8T_SET_CHANNEL_CONFIG
Function: Sets up the Tx registers for the appropriate channel.
Input: LV8T_CHANNEL_CONFIG

 Page 8 Electronics Design • Manufacturing Services

Output: None
Notes: Sets up the specified channel’s configuration using the information
supplied in the LV8T_CHANNEL_CONFIG input structure. This structure
contains four UCHAR fields: WCount, XCount, YCount, and ZCount. These
fields specify the number of times samples of different types are repeated
when the expand mode is enabled. Two USHORT fields: Idle0 and Idle1
specify the pattern that is sent before the transmission is started and after
it ends, respectively. The remaining five fields are boolean quantities:
ExtTrig1Enable and ExtTrig2Enable when TRUE require the assertion of the
respective external trigger to start transmission, Expand enables the
expand mode described above, ClockSelect selects the Tx clock when TRUE
and the PCI clock otherwise, finally SerializeEnable enables the LVDS
serializer and drivers.

IOCTL_LV8T_GET_CHANNEL_CONFIG
Function: Retreives information from the specified channel’s Tx registers
Input: None
Output: LV8T_CHANNEL_CONFIG
Notes: Retreives information from the specified channel’s Tx registers.
The LV8T_CHANNEL_CONFIG output structure is described above.

IOCTL_LV8T_SET_TIMING_CONFIG
Function: Sets the timing parameters for the data transmission
Input: LV8T_TIMING_CONFIG
Output: None
Notes: This call can be made from any channel with the same effect, since
the same register is accessed. Sets the timing configuration using the
information supplied in the LV8T_TIMING_CONFIG input structure. The
structure contains a USHORT field: Divisor that controls the frequency of
the divided clock when this is enabled, an enumerated type field:
ClockSource that specifies one of four possible clock sources, and three
boolean fields. DivClock enables the use of the divided clock when TRUE or
the clock source when FALSE. MasterMode configures the board as a
master (supplies start pulse and clock to other boards) when TRUE or a
slave (receives and retransmits start pulse and clock) when FALSE.
ExtPulseEn determines the source of the start pulse that is output when
MasterMode is true. If ExtPulseEn is TRUE the pulse input received from
the front panel connector is re-transmitted out the rear and front panel
outputs, when FALSE the locally generated pulse is transmitted.

 Page 9 Electronics Design • Manufacturing Services

IOCTL_LV8T_GET_ TIMING_CONFIG
Function: Retrieves the timing configuration.
Input: None
Output: LV8T_TRIGGER_CONFIG
Notes: Retrieves the timing configuration information from the board, any
channel can be used to access this information. The
LV8T_TRIGGER_CONFIG output structure is described above.

IOCTL_LV8T_SET_LOCAL_START
Function: Configures the channel specific start and restart parameters.
Input: LV8T_LOCAL_START_CONFIG
Output: None
Notes: Sets the local start parameters for the specified channel. The
LV8T_LOCAL_START_CONFIG input structure contains two boolean fields:
Start , which sets the Address generator and Tx start bits, and Restart
which enables the Tx state machine to transition from the terminal idle
state back to the initial idle state. This IOCTL is used in conjunction with
the next (IOCTL_LV8T_SET_MASTER_START) to start the channel
transmission.

IOCTL_LV8T_SET_MASTER_START
Function: Configures the overall start and external trigger output
parameters.
Input: LV8T_MASTER_START_CONFIG
Output: None
Notes: Sets the master start signal and external enable pulse output. The
LV8T_MASTER_START_CONFIG input structure contains two boolean fields:
Pulse , which generates a pulse that is driven off the board when the board
is configured as a master, and Enable, which is used in conjunction with
the local start to begin the data transmission.

IOCTL_LV8T_START_READBACK_MODE
Function: Configures the specified channel to read back Tx data over the
PCI bus.
Input: None
Output: LV8T_RDBK_CONFIG
Notes: This IOCTL is provided as a debugging tool. It allows data written to
the output FIFO to be read back over the PCI bus. The
LV8T_RDBK_CONFIG output structure stores parameter values to be

 Page 10 Electronics Design • Manufacturing Services

restored by IOCTL_LV8T_STOP_READBACK_MODE when the data read back
is stopped.

IOCTL_LV8T_STOP_READBACK_MODE
Function: Configures the specified channel to read back Tx data over the
PCI bus.
Input: LV8T_RDBK_CONFIG
Output: None
Notes: This IOCTL is called when Tx data read back is no longer desired. It
restores the parameters stored in the LV8T_RDBK_CONFIG input structure
to the values that were present before the read back mode was started.

IOCTL_LV8T_GET_TX_DATA
Function: Reads one 32-bit Tx data word.
Input: None
Output: ULONG
Notes: This IOCTL is used after read back mode is initiated. Each time it is
called it retrieves one 32-bit Tx data word, which is comprised of two LVDS
data samples.

IOCTL_LV8T_START_SLAVEWRITE_MODE
Function: Configures the specified channel to write data to the SDRAM
without DMA.
Input: ULONG
Output: None
Notes: This IOCTL is provided as a debugging tool. It allows data to be
written to the SDRAM over the PCI bus one word at a time. It is only valid
for channels 0 and 4 depending on which SDRAM bank is to be written.
The input parameter is the number of bytes of data to be written. The
value set by IOCTL_LV8T_SET_WRITE_OFFSET is used as the starting point
for the data writes.

IOCTL_LV8T_STOP_SLAVEWRITE_MODE
Function: Configures the specified channel to read back Tx data over the
PCI bus.
Input: None
Output: ULONG

 Page 11 Electronics Design • Manufacturing Services

Notes: This IOCTL stops the slave write mode started in the previous IOCTL
and restores the memory configuration that existed before this mode was
started. The parameter returned is the number of bytes actually written to
memory.

IOCTL_LV8T_PUT_RAM_DATA
Function: Writes one 32-bit data word to the SDRAM.
Input: ULONG
Output: None
Notes: This IOCTL is used after the slave write mode is initiated. Each time
it is called it writes one 32-bit data word to the SDRAM.

IOCTL_LV8T_SET_WRITE_OFFSET
Function: Sets the starting offset in SDRAM for a WriteFile or SlaveWrite
operation.
Input: ULONG
Output: None
Notes: Sets a software variable that is used to set the Starting Address in
the SDRAM for WriteFile and SlaveWrite calls. This IOCTL will succeed only
if called on channel 0 or channel 4.

IOCTL_LV8T_GET_WRITE_OFFSET
Function: Retrieves the starting offset in SDRAM for a WriteFile or
SlaveWrite operation.
Input: None
Output: ULONG
Notes: Retrieves the software variable that is used to set the Starting
Address in the SDRAM for WriteFile and SlaveWrite calls. This IOCTL will
succeed only if called on channel 0 or channel 4.

IOCTL_LV8T_RESET_ALL_OUTPUT_FIFOS
Function: Resets all 8 output FIFOs
Input: None
Output: None
Notes: This function resets all 8 output FIFOs. In order to accomplish this,
the function selects the PCI clock for all Tx channels. It then resets the
output FIFOs by writing to the DMA Base Control register. The Tx channels
are then restored to their original values. This function will affect all 8

 Page 12 Electronics Design • Manufacturing Services

channels. No other operations should be taking place when this function is
called.

Write

DMA mode
LV8T DMA data is written to the device using write driver calls. A write
call refers to a single Device Object in the driver, which controls a single
channel. Writes are executed using the Win32 function WriteFile() and
passing in the handle to the device opened with CreateFile(). WriteFile()
takes as an input parameter a pointer to a pre allocated buffer and a
DWORD that represents the size of the buffer. WriteFile () takes as an
output parameter a pointer to a DWORD that represents the number of
bytes written by WriteFile (). WriteFile can only be used with channel 0 or
channel 4. Use channel 0 to access the 256MB SDRAM bank used for
channels 0-3. Use channel 4 to access the 256MB SDRAM bank used for
channels 4-7. To use WriteFile, first set up the Write Offset. The Write
Offset is the offset in the SDRAM bank at which you wish to start your
WriteFile. The default Offset when the driver first loads will be zero. Valid
values for a Write Offset are between 0 and 0x1ffffff. The WriteFile will
begin at the Write Offset and continue writing data until the specified length
is transferred or the end of SDRAM is reached. A WriteFile call will not
ultimately alter the channel’s memory configuration. It will temporarily set
the Address Generator registers to appropriate values to complete the
WriteFile call, but when the WriteFile call completes these registers will be
returned to their original settings.

 Page 13 Electronics Design • Manufacturing Services

Warranty and Repair

Dynamic Engineering warrants this product to be free from defects under
normal use and service and in its original, unmodified condition, for a period
of one year from the time of purchase. If the product is found to be
defective within the terms of this warranty, Dynamic Engineering's sole
responsibility shall be to repair, or at Dynamic Engineering's sole option to
replace, the defective product.

Dynamic Engineering's warranty of and liability for defective products is
limited to that set forth herein. Dynamic Engineering disclaims and excludes
all other product warranties and product liability, expressed or implied,
including but not limited to any implied warranties of merchandisability or
fitness for a particular purpose or use, liability for negligence in
manufacture or shipment of product, liability for injury to persons or
property, or for any incidental or consequential damages.

Dynamic Engineering’s products are not authorized for use as critical
components in life support devices or systems without the express written
approval of the president of Dynamic Engineering.

 Page 14 Electronics Design • Manufacturing Services

Service Policy

Before returning a product for repair, verify as well as possible that the
driver is at fault. The driver has gone through extensive testing and in most
cases it will be “cockpit error” rather than an error with the driver. When
you are sure or at least willing to pay to have someone help then call the
Customer Service Department and arrange to speak with an engineer. We
will work with you to determine the cause of the issue. If the issue is one of
a defective driver we will correct the problem and provide an updated
module(s) to you [no cost]. If the issue is of the customer’s making
[anything that is not the driver] the engineering time will be invoiced to
customer. Pre-approval may be required in some cases depending on the
customer’s invoicing policy.

Out of Warranty Repairs

Out of warranty support will be billed. The current minimum repair charge
is $125. An open PO will be required.

For Service Contact:

Customer Service Department
Dynamic Engineering
435 Park Dr.
Ben Lomond, CA 95005
831-336-8891
831-336-3840 fax
support@dyneng.com

All information provided is Copyright Dynamic Engineering

