
DYNAMIC ENGINEERING
435 Park Dr., Ben Lomond, Calif. 95005
831-336-8891 Fax 831-336-3840

 http://www.dyneng.com
sales@dyneng.com

 Est. 1988

PCI-NECL-XG1

Driver Documentation

Win32 Driver Model

Revision A

Corresponding Hardware: Revision A/B
10-2004-0301/2

Corresponding Firmware: Revision A

 Page 2 Electronics Design • Manufacturing Services

PciSE
WDM Device Driver for the
PCI-NECL-XG1
PCI based Re-configurable logic
with NECL and TTL IO

Dynamic Engineering
435 Park Drive
Ben Lomond, CA 95005
831- 336-8891
831-336-3840 FAX

This document contains information of proprietary
interest to Dynamic Engineering. It has been supplied in
confidence and the recipient, by accepting this material,
agrees that the subject matter will not be copied or
reproduced, in whole or in part, nor its contents
revealed in any manner or to any person except to
meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to ensure
that this manual is accurate and complete. Still, the
company reserves the right to make improvements or
changes in the product described in this document at
any time and without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of the
application or use of the device described herein.

The electronic equipment described herein generates,
uses, and can radiate radio frequency energy.
Operation of this equipment in a residential area is likely
to cause radio interference, in which case the user, at
his own expense, will be required to take whatever
measures may be required to correct the interference.

Dynamic Engineering’s products are not authorized for
use as critical components in life support devices or
systems without the express written approval of the
president of Dynamic Engineering.

This product has been designed to operate with
compatible user-provided equipment. Connection of
incompatible hardware is likely to cause serious
damage.

©2003-2004 by Dynamic Engineering.

Trademarks and registered trademarks are owned by their
respective manufacturers.
Manual Revision A. Revised August 23, 2004.

 Page 3 Electronics Design • Manufacturing Services

Table of Contents

Introduction 5

Note 5

Driver Installation 5

Windows 2000 Installation 5

Windows XP Installation 6

Driver Startup 7

IO Controls 9
IOCTL_PCISE_GET_INFO 10
IOCTL_PCISE_GET_STATUS 10
IOCTL_PCISE_SET_CONFIG 10
IOCTL_PCISE_GET_CONFIG 10
IOCTL_PCISE_SET_INT_CONFIG 11
IOCTL_PCISE_GET_INT_CONFIG 11
IOCTL_PCISE_GET_INT_STAT 11
IOCTL_PCISE_PUT_TX_DATA 11
IOCTL_PCISE_GET_RX_DATA 12
IOCTL_PCISE_PUT_DMA_DATA 12
IOCTL_PCISE_GET_DMA_DATA 12
IOCTL_PCISE_RESET_FIFOS 12
IOCTL_PCISE_SET_EXT_FIFO_LEVELS 12
IOCTL_PCISE_GET_EXT_FIFO_LEVELS 13
IOCTL_PCISE_SET_DMA_FIFO_LEVELS 13
IOCTL_PCISE_GET_DMA_FIFO_LEVELS 13
IOCTL_PCISE_GET_ISR_STATUS 13
IOCTL_PCISE_REGISTER_EVENT 14
IOCTL_PCISE_ENABLE_INTERRUPT 14
IOCTL_PCISE_DISABLE_INTERRUPT 14
IOCTL_PCISE_FORCE_INTERRUPT 14
IOCTL_PCISE_LOAD_PLL_DATA 15
IOCTL_PCISE_READ_PLL_DATA 15
IOCTL_PCISE_SET_TTL 15
IOCTL_PCISE_GET_TTL 15
IOCTL_PCISE_SET_ECL 15
IOCTL_PCISE_GET_ECL 16
IOCTL_PCISE_SET_TX_COUNT 16

 Page 4 Electronics Design • Manufacturing Services

Write 16

Read 16

WARRANTY AND REPAIR 17

Service Policy 17
Out of Warranty Repairs 17

For Service Contact: 18

 Page 5 Electronics Design • Manufacturing Services

Introduction
The PciSE driver is a Win32 driver model (WDM) device driver for the PCI-
NECL-XG1 from Dynamic Engineering. The PCI-NECL-XG1 board has a PLX
9054 and a Xilinx FPGA to implement the PCI interface, DMA data I/O, 19
NECL, and 12 TTL data I/O for the board. There is also a programmable
PLL that is programmed by and connected to the Xilinx to generate
programmable clock rates for the I/O. An internal 1k x 32-bit FIFO is used
to buffer the DMA transfers and a 128k x 32-bit external FIFO is used to
buffer the high-speed serial I/O.

When the PCI-NECL-XG1 is recognized by the PCI bus configuration utility it
will start the PciSE driver to allow communication with the device. IO Control
calls (IOCTLs) are used to configure and read status from the PCI-NECL-
XG1. Read and Write calls are used to move blocks of data in and out of
the device.

Note
This documentation will provide information about all calls made to the
driver, and how the driver interacts with the device for each of these calls.
For more detailed information on the hardware implementation, refer to the
PCI-NECL-XG1 user manual (also referred to as the hardware manual).

Driver Installation
There are several files provided in each driver package. These files include
PciSE.sys, PciSE.inf, DDPciSE.h, PciSEGUID.h, PciSEDef.h, PSETest.exe,
and PSETest source files.

Windows 2000 Installation
Copy PciSE.inf and PciSE.sys to a floppy disk, or CD if preferred.

With the PCI-NECL-XG1 installed, power-on the PCI host computer and wait
for the Found New Hardware Wizard dialogue window to appear.
• Select Next.
• Select Search for a suitable driver for my device.
• Select Next.
• Insert the disk prepared above in the desired drive.

 Page 6 Electronics Design • Manufacturing Services

• Select the appropriate drive e.g. Floppy disk drives.
• Select Next.
• The wizard should find the PciSE.inf file.
• Select Next.
• Select Finish to close the Found New Hardware Wizard.

Windows XP Installation
Copy PciSE.inf to the WINDOWS\INF folder and copy PciSE.sys to a floppy
disk, or CD if preferred. Right click on the PciSE.inf file icon in the
WINDOWS\INF folder and select Install from the pop-up menu. This will
create a precompiled information file (.pnf) in the same directory.

With the PCI-NECL-XG1 installed, power-on the PCI host computer and wait
for the Found New Hardware Wizard dialogue window to appear, or select
the Add Hardware control panel.
• Insert the disk prepared above in the appropriate drive.
• Select Install from a list or specific location
• Select Next.
• Select Don’t search. I will choose the driver to install.
• Select Next.
• Select Show All Devices from the list
• Select Next.
• Select Dynamic Engineering from the Manufacturer list
• Select Pci-Serial-ECL Device from the Model list
• Select Next.
• Select Yes on the Update Driver Warning dialogue box.
• Enter the drive e.g. A:\ in the Files Needed dialogue box.
• Select OK.
• Select Finish to close the Found New Hardware Wizard.

The DDPciSE.h file is a C header file that defines the Application Program
Interface (API) to the driver. The PciSEGUID.h file is a C header file that
defines the device interface identifier for the PciSE driver. These files are
required at compile time by any application that wishes to interface with the
PciSE driver. The PciSEDef.h file contains the relevant bit defines for the
PciSE registers. These files are not needed for driver installation.

The PSETest.exe file is a sample Win32 console application that makes
calls into the PciSE driver to test the driver calls without actually writing any

 Page 7 Electronics Design • Manufacturing Services

application code. It is not required during the driver installation. Open a
command prompt console window and type PSETest –d0 -? to display a list
of commands (the PSETest.exe file must be in the directory that the window
is referencing). The commands are all of the form PSETest –dn –im where
n and m are the device number and driver ioctl number respectively. This
application is intended to test the proper functioning of the driver calls, not
for normal operation.

Driver Startup
Once the driver has been installed it will start automatically when the
system recognizes the hardware.

A handle can be opened to a specific board by using the CreateFile()
function call and passing in the device name obtained from the system.
The interface to the device is identified using a globally unique identifier
(GUID), which is defined in PciSEGUID.h.

Below is example code for opening a handle for device 0. The device
number is underlined in the SetupDiEnumDeviceInterfaces call.

// The maximum length of the device name for a given interface
#define MAX_DEVICE_NAME 256
// Handle to the device object
HANDLE hPciSE = INVALID_HANDLE_VALUE;
// Return status from command
LONG status;
// Handle to device interface information structure
HDEVINFO hDeviceInfo;
// The actual symbolic link name to use in the createfile
CHAR deviceName[MAX_DEVICE_NAME];
// Size of buffer required to get the symbolic link name
DWORD requiredSize;
// Interface data structures for this device
SP_DEVICE_INTERFACE_DATA interfaceData;
PSP_DEVICE_INTERFACE_DETAIL_DATA pDeviceDetail;

hDeviceInfo = SetupDiGetClassDevs((LPGUID)&GUID_DEVINTERFACE_PCISE,
 NULL,
 NULL,
 DIGCF_PRESENT |
DIGCF_DEVICEINTERFACE);

if(hDeviceInfo == INVALID_HANDLE_VALUE)
{
 printf("**Error: couldn't get class info, (%d)\n",
 GetLastError());
 exit(-1);
}

 Page 8 Electronics Design • Manufacturing Services

interfaceData.cbSize = sizeof(interfaceData);

// Find the interface for device 0
if(!SetupDiEnumDeviceInterfaces(hDeviceInfo,
 NULL,
 (LPGUID)&GUID_DEVINTERFACE_PCISE,
 0,
 &interfaceData))
{
 status = GetLastError();
 if(status == ERROR_NO_MORE_ITEMS)
 {
 printf("**Error: couldn't find device(no more items), (%d)\n",
0);
 SetupDiDestroyDeviceInfoList(hDeviceInfo);
 exit(-1);
 }
 else
 {
 printf("**Error: couldn't enum device, (%d)\n",
 status);
 SetupDiDestroyDeviceInfoList(hDeviceInfo);
 exit(-1);
 }
}

// Get the details data to obtain the symbolic link name
if(!SetupDiGetDeviceInterfaceDetail(hDeviceInfo,
 &interfaceData,
 NULL,
 0,
 &requiredSize,
 NULL))
{
 if(GetLastError() != ERROR_INSUFFICIENT_BUFFER)
 {
 printf("**Error: couldn't get interface detail, (%d)\n",
 GetLastError());
 SetupDiDestroyDeviceInfoList(hDeviceInfo);
 exit(-1);
 }
}

// Allocate a buffer to get detail
pDeviceDetail = (PSP_DEVICE_INTERFACE_DETAIL_DATA)malloc(requiredSize);
if(pDeviceDetail == NULL)
{
 printf("**Error: couldn't allocate interface detail\n");
 SetupDiDestroyDeviceInfoList(hDeviceInfo);
 exit(-1);
}

pDeviceDetail->cbSize = sizeof(SP_DEVICE_INTERFACE_DETAIL_DATA);

// Get the detail info
if(!SetupDiGetDeviceInterfaceDetail(hDeviceInfo,
 &interfaceData,
 pDeviceDetail,

 Page 9 Electronics Design • Manufacturing Services

 requiredSize,
 NULL,
 NULL))
{
 printf("**Error: couldn't get interface detail(2), (%d)\n",
 GetLastError());
 SetupDiDestroyDeviceInfoList(hDeviceInfo);
 free(pDeviceDetail);
 exit(-1);
}

// Save the name
lstrcpyn(deviceName,
 pDeviceDetail->DevicePath,
 MAX_DEVICE_NAME);

// Cleanup search
free(pDeviceDetail);
SetupDiDestroyDeviceInfoList(hDeviceInfo);

// Open driver
// Create the handle to the device
hPciSE = CreateFile(deviceName,
 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ | FILE_SHARE_WRITE,
 NULL,
 OPEN_EXISTING,
 NULL,
 NULL);

if(hPciSE == INVALID_HANDLE_VALUE)
{
 printf("**Error: couldn't open %s, (%d)\n", deviceName,
 GetLastError());
 exit(-1);
}

IO Controls
The driver uses IO Control calls (IOCTLs) to configure the device. IOCTLs
refer to a single Device Object which controls a single board. IOCTLs are
called using the Win32 function DeviceIoControl(), and passing in the handle
to the device opened with CreateFile(). IOCTLs generally have input
parameters, output parameters, or both. Often a custom structure is used.
The IOCTLs defined in this driver are as follows:

 Page 10 Electronics Design • Manufacturing Services

IOCTL_PCISE_GET_INFO

Function: Return the Driver Version, Switch value, Instance Number, and External
FIFO size.
Input: none
Output: PCISE_DRIVER_DEVICE_INFO structure
Notes: Switch value is the configuration of the onboard dipswitch that has
been selected by the User (see the board silk screen for bit position and
polarity). The FIFO size is dynamically detected when the driver starts up.
The value returned is one less than the actual FIFO size (the index of the
last word).

IOCTL_PCISE_GET_STATUS

Function: Return the FIFO levels and other status information.
Input: none
Output: PCISE_READ_STATUS structure
Notes: The PCISE_READ_STATUS structure has two fields: StatusReg is the
value read from the status register, which contains the DMA FIFO word
count and other status flag values for both FIFOs (see the bit definitions in
PciSEDef.h for information on interpreting this value) and ExtFifoCount which
is the number of words in the External FIFO.

IOCTL_PCISE_SET_CONFIG

Function: Write to the base configuration register on the PCI-Serial-ECL.
Input: Unsigned long int
Output: none
Notes: Only the bits in the BASE_CONFIG_MASK are controlled by this
command. See the bit definitions in PciSEDef.h for information on
determining this value.

IOCTL_PCISE_GET_CONFIG

Function: Return the configuration of the base control register.
Input: none
Output: Unsigned long int
Notes: The value read does not include reset bits or the force interrupt bit.
This command is used mainly for testing.

 Page 11 Electronics Design • Manufacturing Services

IOCTL_PCISE_SET_INT_CONFIG

Function: Set the Interrupt enable configuration.
Input: Unsigned long int
Output: none
Notes: This command determines which conditions are enabled to cause
an interrupt when the master interrupt enable is set. See the bit definitions
in PciSEDef.h for information on determining this value.

IOCTL_PCISE_GET_INT_CONFIG

Function: Return the Interrupt enable configuration.
Input: none
Output: Unsigned long int
Notes: Returns the signals enabled to cause an interrupt. See the bit
definitions in PciSEDef.h for information on interpreting this value.

IOCTL_PCISE_GET_INT_STAT

Function: Return the interrupt status and clear the latched bits.
Input: none
Output: Unsigned long int
Notes: This command returns the latched interrupt status bits and the
interrupt active status bit. Latched bits that are read as true are then
automatically written back to the register to clear the latches. This prevents
missing interrupts that occur between the read and the write of the
register. See the bit definitions in PciSEDef.h for information on interpreting
this value.

IOCTL_PCISE_PUT_TX_DATA

Function: Load a Tx data word.
Input: Unsigned long int
Output: none
Notes: This command can be used to load a single long word to the
External FIFO.

 Page 12 Electronics Design • Manufacturing Services

IOCTL_PCISE_GET_RX_DATA

Function: Read an Rx data word.
Input: none
Output: Unsigned long int
Notes: This command can be used to read a single long word from the
External FIFO.

IOCTL_PCISE_PUT_DMA_DATA

Function: Load a DMA FIFO data word.
Input: Unsigned long int
Output: none
Notes: Loads a single long word into the DMA FIFO.

IOCTL_PCISE_GET_DMA_DATA

Function: Read a DMA FIFO data word.
Input: none
Output: Unsigned long int
Notes: Reads a single long word from the DMA FIFO.

IOCTL_PCISE_RESET_FIFOS

Function: Reset the External and/or DMA FIFO.
Input: PCISE_FIFO_SEL enumeration type
Output: none
Notes: Resets either the DMA FIFO, the External FIFO, or both depending
on the input value.

IOCTL_PCISE_SET_EXT_FIFO_LEVELS

Function: Set the External FIFO almost empty and almost full levels.
Input: PCISE_EXT_LEVEL_LOAD structure
Output: none
Notes: The PCISE_EXT_LEVEL_LOAD structure has two fields: AlmostFull –
the almost full level to set in the External FIFO, and AlmostEmpty – the
almost empty level to set in the External FIFO.

 Page 13 Electronics Design • Manufacturing Services

IOCTL_PCISE_GET_EXT_FIFO_LEVELS

Function: Return the External FIFO almost empty and almost full levels.
Input: none
Output: PCISE_EXT_LEVEL_LOAD structure
Notes: See above for description of PCISE_EXT_LEVEL_LOAD structure.

IOCTL_PCISE_SET_DMA_FIFO_LEVELS

Function: Set the DMA FIFO almost empty and almost full levels.
Input: PCISE_DMA_LEVEL_LOAD structure
Output: none
Notes: The PCISE_DMA_LEVEL_LOAD structure has two fields: AlmostFull –
the almost full level to set in the External FIFO, and AlmostEmpty – the
almost empty level to set in the External FIFO.

IOCTL_PCISE_GET_DMA_FIFO_LEVELS

Function: Return the DMA FIFO almost empty and almost full levels.
Input: none
Output: PCISE_DMA_LEVEL_LOAD structure
Notes: See above for description of PCISE_DMA_LEVEL_LOAD structure.

IOCTL_PCISE_GET_ISR_STATUS

Function: Return the interrupt status read in the ISR from the last
interrupt.
Input: none
Output: Unsigned long int
Notes: The value returned is the result of the last interrupt caused by one
of the signals enabled in the previous IOCTL_PCISE_SET_INT_CONFIG
command. The interrupts that deal with the DMA transfers do not affect
this value.

 Page 14 Electronics Design • Manufacturing Services

 IOCTL_PCISE_REGISTER_EVENT

Function: Register an event to be signaled when an interrupt occurs.
Input: Handle to Event object
Output: none
Notes: The caller creates an event with CreateEvent() and supplies the
handle returned from that call as the input to this IOCTL. The driver then
obtains a system pointer to the event and signals the event when a user
interrupt is serviced. The user interrupt service routine waits on this event,
allowing it to respond to the interrupt. The DMA interrupts do not cause
the event to be signaled.

IOCTL_PCISE_ENABLE_INTERRUPT

Function: Enable the master interrupt.
Input: none
Output: none
Notes: This command must be run to allow the board to respond to local
interrupts. The master interrupt enable is disabled in the driver interrupt
service routine. This command must be run to re-enable it.

IOCTL_PCISE_DISABLE_INTERRUPT

Function: Disable the master interrupt.
Input: none
Output: none
Notes: Used when local interrupt processing is no longer desired.

IOCTL_PCISE_FORCE_INTERRUPT

Function: Causes a system interrupt to occur.
Input: none
Output: none
Notes: Causes an interrupt to be asserted on the PCI bus as long as the
master interrupt is enabled. This IOCTL is used for development, to test
interrupt processing.

 Page 15 Electronics Design • Manufacturing Services

IOCTL_PCISE_LOAD_PLL_DATA

Function: Load the internal registers of the PLL.
Input: PCISE_PLL_DATA structure
Output: none
Notes: The PCISE_PLL_DATA structure has one field: an array of 40 bytes
containing the PLL register data to write.

IOCTL_PCISE_READ_PLL_DATA

Function: Return the contents of the PLL’s internal registers.
Input: none
Output: PCISE_PLL_DATA structure
Notes: The register data is output in the PCISE_PLL_DATA structure as an
array or 40 bytes.

IOCTL_PCISE_SET_TTL

Function: Sets the values of the 12 TTL lines.
Input: Unsigned short int
Output: none
Notes: These are open drain lines that are pulled-up to +5 volts, therefore
they must be set high in order to be used as inputs.

IOCTL_PCISE_GET_TTL

Function: Returns the values read from the 12 TTL lines.
Input: none
Output: Unsigned short int
Notes: These are open drain lines that are pulled-up to +5 volts, therefore
they must be set high in order to be used as inputs, otherwise a low will be
read regardless of the input level.

IOCTL_PCISE_SET_ECL

Function: Set the values of the lower 16 ECL output lines.
Input: Unsigned short int
Output: none
Notes: The lower 16 bits of the ECL I/O are used as a general-purpose
data bus. This call allows setting the output value of this bus.

 Page 16 Electronics Design • Manufacturing Services

IOCTL_PCISE_GET_ECL

Function: Return the values read from the lower 16 ECL input lines.
Input: none
Output: Unsigned short int
Notes: The lower 16 bits of the ECL I/O are used as a general-purpose
data bus. This call allows reading the value of the input bus.

IOCTL_PCISE_SET_TX_COUNT

Function: Set the start value of the Tx data counter.
Input: none
Output: Unsigned long int
Notes: In order to test the card in a standalone configuration, The
transmitter can be configured to output data from a counter rather than
the External FIFO. This allows the External FIFO to be used by the receiver
so that when the transmitter is looped to the receiver, both can operate
simultaneously. This call sets the start value of the transmitter data
counter.

Write
PCI-NECL-XG1 DMA data is written to the device using the write command.
Writes are executed using the Win32 function WriteFile() and passing in
the handle to the device opened with CreateFile(), a pointer to a pre-
allocated buffer containing the data to be written, an unsigned long int that
represents the size of that buffer in bytes, a pointer to an unsigned long int
to contain the number of bytes actually written, and a pointer to an optional
Overlapped structure for performing asynchronous IO.

Read
PCI-NECL-XG1 DMA data is read from the device using the read command.
Reads are executed using the Win32 function ReadFile() and passing in the
handle to the device opened with CreateFile(), a pointer to a pre-allocated
buffer that will contain the data read, an unsigned long int that represents
the size of that buffer in bytes, a pointer to an unsigned long int to contain
the number of bytes actually read, and a pointer to an optional Overlapped
structure for performing asynchronous IO.

 Page 17 Electronics Design • Manufacturing Services

Warranty and Repair
Dynamic Engineering warrants this product to be free from defects under
normal use and service and in its original, unmodified condition, for a period
of one year from the time of purchase. If the product is found to be
defective within the terms of this warranty, Dynamic Engineering's sole
responsibility shall be to repair, or at Dynamic Engineering's sole option to
replace, the defective product.

Dynamic Engineering's warranty of and liability for defective products is
limited to that set forth herein. Dynamic Engineering disclaims and excludes
all other product warranties and product liability, expressed or implied,
including but not limited to any implied warranties of merchandisability or
fitness for a particular purpose or use, liability for negligence in
manufacture or shipment of product, liability for injury to persons or
property, or for any incidental or consequential damages.

Dynamic Engineering’s products are not authorized for use as critical
components in life support devices or systems without the express written
approval of the president of Dynamic Engineering.

Service Policy
Before returning a product for repair, verify as well as possible that the
driver is at fault. The driver has gone through extensive testing and in most
cases it will be “cockpit error” rather than an error with the driver. When
you are sure or at least willing to pay to have someone help then call the
Customer Service Department and arrange to speak with an engineer. We
will work with you to determine the cause of the issue. If the issue is one of
a defective driver we will correct the problem and provide an updated
module(s) to you [no cost]. If the issue is of the customer’s making
[anything that is not the driver] the engineering time will be invoiced to the
customer. Pre-approval may be required in some cases depending on the
customer’s invoicing policy.

Out of Warranty Repairs

Out of warranty support will be billed. The current minimum repair charge is
$125. An open PO will be required.

 Page 18 Electronics Design • Manufacturing Services

For Service Contact:
Customer Service Department
Dynamic Engineering
435 Park Dr.
Ben Lomond, CA 95005
831-336-8891
831-336-3840 fax
support@dyneng.com

All information provided is Copyright Dynamic Engineering

