
DYNAMIC ENGINEERING 
150 DuBois, Suite C 

Santa Cruz, CA 95060 
(831) 457-8891   Fax (831) 457-4793 

http://www.dyneng.com 
sales@dyneng.com 

Est. 1988 
 
 
 
 
 
 
 
 

Bae9Base 
& 

Bae9Chan 
 

Driver Documentation 
 

Developed with Windows Driver Foundation 
 
 
 
 
 
 
 
 
 

Revision B 
Corresponding Hardware: Revision D, E 

10-2005-0204/0205 
Corresponding Firmware: Revision E 

 

http://www.dyneng.com/
mailto:dedra@dyneng.com


               Embedded Solutions                       Page 2 of 23 

Bae9Base, Bae9Chan 
WDF Device Drivers for the 
PMC-BiSerial-III-BAE9 
8-Channel PMC-Based UART Interface 

Dynamic Engineering 
150 DuBois, Suite C 
Santa Cruz, CA 95060 
(831) 457-8891 
FAX: (831) 457-4793 

This document contains information of 
proprietary interest to Dynamic Engineering. It 
has been supplied in confidence and the 
recipient, by accepting this material, agrees that 
the subject matter will not be copied or 
reproduced, in whole or in part, nor its contents 
revealed in any manner or to any person except 
to meet the purpose for which it was delivered. 
 
Dynamic Engineering has made every effort to 
ensure that this manual is accurate and 
complete. Still, the company reserves the right to 
make improvements or changes in the product 
described in this document at any time and 
without notice. Furthermore, Dynamic 
Engineering assumes no liability arising out of 
the application or use of the device described 
herein. 
 
The electronic equipment described herein 
generates, uses, and can radiate radio 
frequency energy. Operation of this equipment 
in a residential area is likely to cause radio 
interference, in which case the user, at his own 
expense, will be required to take whatever 
measures may be required to correct the 
interference. 
 
Dynamic Engineering’s products are not 
authorized for use as critical components in life 
support devices or systems without the express 
written approval of the president of Dynamic 
Engineering. 
 
Connection of incompatible hardware is likely to 
cause serious damage. 

©2012, 2013 by Dynamic Engineering. 
Other trademarks and registered trademarks are owned by their 
respective manufactures. 
Manual Revision B Revised February 25, 2013 



               Embedded Solutions                       Page 3 of 23 

Table of Contents

 
Introduction .............................................................................................................................................. 5 
Note ........................................................................................................................................................... 5 
Driver Installation ..................................................................................................................................... 5 
Windows XP Installation ......................................................................................................................... 6 
Windows 7 Installation ............................................................................................................................ 6 
Driver Startup ........................................................................................................................................... 7 
IO Controls ............................................................................................................................................... 7 

IOCTL_BAE9_BASE_GET_INFO .......................................................................................................... 7 
IOCTL_BAE9_BASE_LOAD_PLL_DATA .............................................................................................. 8 
IOCTL_BAE9_BASE_READ_PLL_DATA .............................................................................................. 8 
IOCTL_BAE9_BASE_SET_CONFIG ..................................................................................................... 8 
IOCTL_BAE9_BASE_GET_CONFIG .................................................................................................... 9 
IOCTL_BAE9_CHAN_GET_INFO ....................................................................................................... 10 
IOCTL_BAE9_CHAN_SET_CONFIG .................................................................................................. 10 
IOCTL_BAE9_CHAN_GET_STATE .................................................................................................... 11 
IOCTL_BAE9_CHAN_GET_STATUS.................................................................................................. 11 
IOCTL_BAE9_CHAN_WRITE_TX_RAM ............................................................................................. 12 
IOCTL_BAE9_CHAN_READ_TX_RAM .............................................................................................. 12 
IOCTL_BAE9_CHAN_WRITE_RX_RAM ............................................................................................ 12 
IOCTL_BAE9_CHAN_READ_RX_RAM .............................................................................................. 13 
IOCTL_BAE9_CHAN_SET_TX_DMA_OFFSET ................................................................................. 13 
IOCTL_BAE9_CHAN_SET_RX_DMA_OFFSET ................................................................................. 13 
IOCTL_BAE9_CHAN_SET_TX_IO_OFFSET ..................................................................................... 13 
IOCTL_BAE9_CHAN_SET_RX_IO_OFFSET ..................................................................................... 13 
IOCTL_BAE9_CHAN_GET_TX_ADDR_OFFSETS ............................................................................ 14 
IOCTL_BAE9_CHAN_GET_RX_ADDR_OFFSETS ............................................................................ 14 
IOCTL_BAE9_CHAN_SET_TRIG_CONFIG ....................................................................................... 14 
IOCTL_BAE9_CHAN_READ_TRIG_PARAMS ................................................................................... 15 
IOCTL_BAE9_CHAN_CLEAR_TRIG_COUNTS ................................................................................. 15 
IOCTL_BAE9_CHAN_READ_TRIG_LEVEL ....................................................................................... 15 
IOCTL_BAE9_CHAN_SET_DISC_OUT_CONFIG .............................................................................. 16 
IOCTL_BAE9_CHAN_SET_TX_CONFIG ........................................................................................... 17 
IOCTL_BAE9_CHAN_GET_TX_STATE ............................................................................................. 17 
IOCTL_BAE9_CHAN_SET_RX_CONFIG ........................................................................................... 18 
IOCTL_BAE9_CHAN_GET_RX_STATE ............................................................................................. 18 
IOCTL_BAE9_CHAN_START_TX ....................................................................................................... 18 
IOCTL_BAE9_CHAN_STOP_TX ......................................................................................................... 19 
IOCTL_BAE9_CHAN_START_RX ...................................................................................................... 19 
IOCTL_BAE9_CHAN_STOP_RX ........................................................................................................ 19 
IOCTL_BAE9_CHAN_GET_RX_BYTE_COUNT ................................................................................ 19 
IOCTL_BAE9_CHAN_REGISTER_EVENT ......................................................................................... 20 
IOCTL_BAE9_CHAN_ENABLE_INTERRUPT .................................................................................... 20 
IOCTL_BAE9_CHAN_DISABLE_INTERRUPT ................................................................................... 20 
IOCTL_BAE9_CHAN_FORCE_INTERRUPT ...................................................................................... 20 
IOCTL_BAE9_CHAN_GET_ISR_STATUS ......................................................................................... 21 



               Embedded Solutions                       Page 4 of 23 

Write ........................................................................................................................................................ 22 
Read ........................................................................................................................................................ 22 

Warranty and Repair ................................................................................................................................. 22 
Service Policy ......................................................................................................................................... 23 

Out of Warranty Repairs ...................................................................................................................... 23 
For Service Contact: .............................................................................................................................. 23 



               Embedded Solutions                       Page 5 of 23 

Introduction 

The Bae9Base and Bae9Chan drivers are Windows device drivers for the PMC-
BiSerial-III BAE9 from Dynamic Engineering.  These drivers were developed with the 
Windows Driver Foundation version 1.9 (WDF) from Microsoft, specifically the Kernel-
Mode Driver Framework (KMDF). 
 
The PMC-BiSerial-III board has a Spartan3-4000 Xilinx FPGA to implement the PCI 
interface, dual-port RAMs and protocol control and status for eight serial channels.  
Each channel has a 4k x 32-bit RAM for transmit data and a 2k x 32-bit RAM for 
received data. 
 
When the PMC-BiSerial-III BAE9 is recognized by the PCI bus configuration utility it will 
start the Bae9Base and Bae9Chan drivers.  The Bae9Base driver enumerates the 
channels and creates eight separate Bae9Chan device objects.  This allows the I/O 
channels to be totally independent while the base driver controls the device items that 
are common.  IO Control calls (IOCTLs) are used to configure the board and read 
status.  Read and Write calls are used to move blocks of data in and out of the I/O 
channel devices. 

Note 

This documentation will provide information about all calls made to the drivers, and how 
the drivers interact with the device for each of these calls.  For more detailed 
information on the hardware implementation, refer to the PMC-BiSerial-III BAE9 user 
manual (also referred to as the hardware manual). 

Driver Installation 

There are several files provided in each driver package.  These files include 
Bae9Base.inf, Bae9Base.cat, Bae9Base.sys, Bae9BasePublic.h, Bae9Chan.inf, 
Bae9Chan.cat, Bae9Chan.sys, Bae9ChanPublic.h, WdfCoInstaller01009.dll, 
Bae9Test.exe and Bae9Test source files Bae9Test.cpp and Bae9Test.hpp. 
 
Bae9BasePublic.h and Bae9ChanPublic.h are C header files that define the Application 
Program Interface (API) for the Bae9Base and Bae9Chan drivers.  These files are 
required at compile time by any application that wishes to interface with the drivers, but 
are not needed for driver installation. 
 
Bae9Test.exe is a menu-based console application that makes calls into the Bae9Base 
/ Bae9Chan drivers to test each driver call without actually writing any application code.  
It is not required during the driver installation.  
 
To run Bae9Test.exe, simply double-click on the test icon.  A console window will open 
and the menu will be printed.  Select a menu item and follow the prompts to execute the 
call.  In Windows 7 Bae9Test must be run as administrator (right-click on icon). 



               Embedded Solutions                       Page 6 of 23 

Windows XP Installation 

Copy Bae9Base.inf, Bae9Base.cat, Bae9Base.sys, Bae9Chan.inf, Bae9Chan.cat, 
Bae9Chan.sys and WdfCoInstaller01009.dll (XP version) to a floppy disk, CD or USB 
memory device as preferred. 
 
With the PMC-BiSerial-III BAE9 hardware installed, power-on the PCI host computer 
and wait for the Found New Hardware Wizard dialogue window to appear. 

 Insert the disk or memory device prepared above in the desired drive. 

 Select No when asked to connect to Windows Update. 

 Select Next. 

 Select Install the software automatically. (If not found go to the next line) 

 Select Install the software from a specific location. (Specify your file’s location) 

 Select Next. 

 Select Finish to close the Found New Hardware Wizard. 
The system should now see the Bae9 I/O channels and reopen the New Hardware 
Wizard.  Proceed as above for each channel as necessary. 

 

Windows 7 Installation 

Copy Bae9Base.inf, Bae9Base.cat, Bae9Base.sys, Bae9Chan.inf, Bae9Chan.cat, 
Bae9Chan.sys and WdfCoInstaller01009.dll (Win7 version) to a floppy disk, CD or USB 
memory device as preferred. 
 
With the PMC-BiSerial-III BAE9 hardware installed, power-on the PCI host computer. 

 Open the Device Manager from the control panel. 

 Under Other devices there should be an Other PCI Bridge Device*. 

 Right-click on the Other PCI Bridge Device and select Update Driver Software. 

 Insert the disk or memory device prepared above in the desired drive. 

 Select Browse my computer for driver software. 

 Browse to the location of the device prepared above. 

 Select Next. 

 Select Close to close the update window. 
The system should now display the Bae9 I/O channels in the Device Manager. 

 Right-click on each channel icon, select Update Driver Software and proceed as 
before. 
 

* If the Other PCI Bridge Device is not displayed, click on the Scan for hardware 
changes icon on the tool-bar. 



               Embedded Solutions                       Page 7 of 23 

Driver Startup 

Once the driver has been installed it will start automatically when the system recognizes 
the hardware. 
 
A handle can be opened to a specific board by using the CreateFile() function call and 
passing in the device name obtained from the system. 
 
The interface to the device is identified using a globally unique identifier (GUID), which 
is defined in Bae9BasePublic.h and Bae9ChanPublic.h.  See main.c in the 
PB3Bae9UserApp project for an example of how to acquire handles for the base and 
eight channel devices. 
 
Note: In order to build an application you must link with setupapi.lib. 

 
IO Controls 

The drivers use IO Control calls (IOCTLs) to configure the device.  IOCTLs refer to a 
single Device Object, which controls a single board or I/O channel.  IOCTLs are called 
using the Win32 function DeviceIoControl() (see below), and passing in the handle to 
the device opened with CreateFile() (see above).  IOCTLs generally have input 
parameters, output parameters, or both.  Often a custom structure is used. 
 

BOOL DeviceIoControl( 

  HANDLE       hDevice,         // Handle opened with CreateFile() 

  DWORD        dwIoControlCode, // Control code defined in API header file 

  LPVOID       lpInBuffer,      // Pointer to input parameter 

  DWORD        nInBufferSize,   // Size of input parameter 

  LPVOID       lpOutBuffer,     // Pointer to output parameter 

  DWORD        nOutBufferSize,  // Size of output parameter 

  LPDWORD      lpBytesReturned, // Pointer to return length parameter 

  LPOVERLAPPED lpOverlapped,    // Optional pointer to overlapped structure 

);                              //   used for asynchronous I/O 

 

The IOCTLs defined for the Bae9Base driver are described below: 

 
IOCTL_BAE9_BASE_GET_INFO 

Function: Returns the device driver version, Xilinx flash revision, PLL device ID, user switch 
value, and device instance number. 
Input: None 
Output: BAE9_BASE_DRIVER_DEVICE_INFO structure 
Notes: The switch value is the configuration of the 8-bit onboard dipswitch that has 
been selected by the user (see the board silk screen for bit position and polarity).  
Instance number is the zero-based device number.  See the definition of 
BAE9_BASE_DRIVER_DEVICE_INFO below. 



               Embedded Solutions                       Page 8 of 23 

 // Driver/Device information 

typedef struct _BAE9_BASE_DRIVER_DEVICE_INFO { 

  UCHAR  DriverVersion; 

  UCHAR  XilinxVersion; 

  UCHAR  SwitchValue; 

  ULONG  InstanceNumber; 

  UCHAR  PllDeviceId; 

} BAE9_BASE_DRIVER_DEVICE_INFO; 

 
IOCTL_BAE9_BASE_LOAD_PLL_DATA 

Function: Writes to the internal registers of the PLL. 
Input:  
BAE9_BASE_PLL_DATA structure 
Output: None 
Notes: The BAE9_BASE_PLL_DATA structure has only one field: Data – an array of 40 
bytes containing the PLL register data to write.  See below for the definition of 
BAE9_BASE_PLL_DATA. 
 

 // Structures for IOCTLs 

#define PLL_MESSAGE1_SIZE  16 

#define PLL_MESSAGE2_SIZE  24 

#define PLL_MESSAGE_SIZE  (PLL_MESSAGE1_SIZE + PLL_MESSAGE2_SIZE) 

 

typedef struct _BAE9_BASE_PLL_DATA { 

  UCHAR  Data[PLL_MESSAGE_SIZE]; 

} BAE9_BASE_PLL_DATA; 

 
IOCTL_BAE9_BASE_READ_PLL_DATA 

Function: Returns the contents of the internal registers of the PLL. 
Input: None 
Output: BAE9_BASE_PLL_DATA structure 
Notes: The register data is written to the BAE9_BASE_PLL_DATA structure in an array 
of 40 bytes.  See definition of BAE9_BASE_PLL_DATA above. 

 
IOCTL_BAE9_BASE_SET_CONFIG 

Function: Specifies the state of the ten trigger input signal terminations. 
Input: BAE9_BASE_CONFIG structure 
Output: None 
Notes: This call controls the terminations for the ten trigger input signals that can be 
selected by any channel to trigger its TX UART and/or discrete output signal.  See the 
definition of BAE9_BASE_CONFIG below. 
 



               Embedded Solutions                       Page 9 of 23 

typedef struct _BAE9_BASE_CONFIG { 

  BOOLEAN  Trig0TermEn;   // Enable termination on trigger 0 input 

  BOOLEAN  Trig1TermEn;   // Enable termination on trigger 1 input 

  BOOLEAN  Trig2TermEn;   // Enable termination on trigger 2 input 

  BOOLEAN  Trig3TermEn;   // Enable termination on trigger 3 input 

  BOOLEAN  Trig4TermEn;   // Enable termination on trigger 4 input 

  BOOLEAN  Trig5TermEn;   // Enable termination on trigger 5 input 

  BOOLEAN  Trig6TermEn;   // Enable termination on trigger 6 input 

  BOOLEAN  Trig7TermEn;   // Enable termination on trigger 7 input 

  BOOLEAN  Trig8TermEn;   // Enable termination on trigger 8 input 

  BOOLEAN  Trig9TermEn;   // Enable termination on trigger 9 input 

} BAE9_BASE_CONFIG, *PBAE9_BASE_CONFIG; 

 
IOCTL_BAE9_BASE_GET_CONFIG 

Function: Returns the state of the trigger input terminations set in the previous call. 
Input: None 
Output: BAE9_BASE_CONFIG structure 
Notes: See the definition of BAE9_BASE_CONFIG above. 



               Embedded Solutions                       Page 10 of 23 

The IOCTLs defined for the Bae9Chan driver are described below: 

 
IOCTL_BAE9_CHAN_GET_INFO 

Function: Returns the channel driver version and the channel instance number. 
Input: None 
Output: BAE9_CHAN_DRIVER_DEVICE_INFO structure 
Notes: See the definition of BAE9_CHAN_DRIVER_DEVICE_INFO below. 
 

// Driver/Device information 

typedef struct _BAE9_CHAN_DRIVER_DEVICE_INFO { 

  UCHAR  DriverVersion; 

  ULONG  InstanceNumber; 

} BAE9_CHAN_DRIVER_DEVICE_INFO; 

 
IOCTL_BAE9_CHAN_SET_CONFIG 

Function: Specifies fields in the channel control register. 
Input: BAE9_CHAN_CONFIG structure 
Output: None 
Notes: This call controls channel configuration items that are not transmit or receive 
specific.  TrigSelect can be any value between 0 and 9 and selects the discrete input 
line (24-33) to be used to trigger the TX UART and/or the discrete output signal.  
TxClkDiv field can be any value between 0x0F and 0x3F yielding I/O bit times of 16 to 
64 I/O clock periods.  TrigCountEn enables the trigger monitor function which counts the 
duration of the high and low levels of the trigger input signal and latches status bits if 
they are outside of the specified range.  The four latch clear bits allow the 
corresponding latches to be cleared after they are read.  FullDuplexEn selects full-
duplex (‘1’) or half-duplex (‘0’) operation of the I/O subsystem.  AutoDirSwitch enables 
the automatic switching from transmit to receive and vice versa when the current active 
direction is done.  See the definition of BAE9_CHAN_CONFIG below. 
 

typedef struct _BAE9_CHAN_CONFIG { 

  UCHAR    TrigSelect;         // Trigger input mux select 

  UCHAR    TxClkDiv;           // Transmit clock div count 

  BOOLEAN  TrigCountEn;        // Count trigger hi and lo level time 

 // Enable clearing of trigger limit latches 

  BOOLEAN  TrigOnOvrLatClr;    //  Trigger '1' too long  

  BOOLEAN  TrigOnUndrLatClr;   //  Trigger '1' too short 

  BOOLEAN  TrigOffOvrLatClr;   //  Trigger '0' too long 

  BOOLEAN  TrigOffUndrLatClr;  //  Trigger '0' too short 

  BOOLEAN  FullDuplexEn;       // Enable full-duplex mode 

  BOOLEAN  AutoDirSwitch;      // Auto-switch direction in half-duplex mode 

} BAE9_CHAN_CONFIG; 



               Embedded Solutions                       Page 11 of 23 

IOCTL_BAE9_CHAN_GET_STATE 

Function: Returns the fields set in the previous call as well as the states of the master and 
read and write interrupt enables. 
Input: None 
Output: BAE9_CHAN_STATE structure 
Notes: The states of the interrupt enables are returned for informational purposes only.  
The values of these fields are controlled by other driver calls.  The MIntEn field is the 
master interrupt enable for all user interrupts controlled by the EnableInterrupt and 
DisableInterrupt calls, whereas the WrDmaEn and RdDmaEn fields are automatically 
controlled by the driver in response to WriteFile and ReadFile calls.  See the definition 
of BAE9_CHAN_STATE below. 
 

typedef struct _BAE9_CHAN_STATE { 

  UCHAR    TrigSelect; 

  UCHAR    TxClkDiv; 

  BOOLEAN  TrigCountEn; 

  BOOLEAN  TrigOnOvrLatClr; 

  BOOLEAN  TrigOnUndrLatClr; 

  BOOLEAN  TrigOffOvrLatClr; 

  BOOLEAN  TrigOffUndrLatClr; 

  BOOLEAN  FullDuplexEn; 

  BOOLEAN  AutoDirSwitch; 

  BOOLEAN  MIntEn;        // Master interrupt enable (read only) 

  BOOLEAN  WrDmaEn;       // Write DMA enable (read only) 

  BOOLEAN  RdDmaEn;       // Read DMA enable (read only) 

} BAE9_CHAN_STATE; 

 
IOCTL_BAE9_CHAN_GET_STATUS 

Function: Returns the channel’s status register value and clears the latched status bits. 
Input: None 
Output: Value of the channel’s status register (unsigned long integer) 
Notes: See the status bit definitions below.  Only the bits in CHAN_STAT_MASK will be 
returned.  The bits in CHAN_STAT_LATCH_MASK will be cleared by this call only if 
they are set when the register was read.  This prevents the possibility of missing an 
interrupt condition that occurs after the register has been read but before the latched 
register bits are cleared.  The bits in CHAN_STAT_LIM_LAT_MASK are cleared by 
IOCTL_BAE9_CHAN_READ_TRIG_PARAMS, not by this call 
 

 // Status bit definitions 

#define CHAN_STAT_TX_INT         0x00000001 

#define CHAN_STAT_RX_INT         0x00000002 

#define CHAN_STAT_RX_PERR_LAT    0x00000004 

#define CHAN_STAT_RX_FERR_LAT    0x00000008 

#define CHAN_STAT_WR_DMA_ERR     0x00000010 

#define CHAN_STAT_RD_DMA_ERR     0x00000020 

#define CHAN_STAT_WR_DMA_INT     0x00000040 

#define CHAN_STAT_RD_DMA_INT     0x00000080 

#define CHAN_STAT_WR_DMA_RDY     0x00000100 



               Embedded Solutions                       Page 12 of 23 

#define CHAN_STAT_RD_DMA_RDY     0x00000200 

#define CHAN_STAT_TRIG_ON_OVER   0x00001000 

#define CHAN_STAT_TRIG_ON_UNDER  0x00002000 

#define CHAN_STAT_TRIG_OFF_OVER  0x00004000 

#define CHAN_STAT_TRIG_OFF_UNDER 0x00008000 

#define CHAN_STAT_LOC_INT        0x08000000 

#define CHAN_STAT_INT_ACTIVE     0x80000000 

 

#define CHAN_STAT_LATCH_MASK     0x0000003F 

#define CHAN_STAT_LIM_LAT_MASK   0x0000F000 

#define CHAN_STAT_MASK           0x8800F3FF 

 
IOCTL_BAE9_CHAN_WRITE_TX_RAM 

Function: Writes a single 32-bit word to the specified address in the transmit RAM. 
Input: Address offset and data value to write (BAE9_MEM_WORD_WRITE structure) 
Output: None 
Notes: See the definition of BAE9_MEM_WORD_WRITE below.  Address indexes 32-
bit words and has a maximum value of 0xFFF (16 Kbytes). 
 

typedef struct _BAE9_MEM_WORD_WRITE { 

  ULONG  Address;  // RAM address offset 

  ULONG  Data;     // RAM data to write 

} BAE9_MEM_WORD_WRITE; 

 
IOCTL_BAE9_CHAN_READ_TX_RAM 

Function: Reads a single 32-bit word from the specified address in the transmit RAM. 
Input: Address (unsigned long integer) 
Output: Data (unsigned long integer) 
Notes: Address indexes 32-bit words and has a maximum value of 0xFFF (16 Kbytes). 

 
IOCTL_BAE9_CHAN_WRITE_RX_RAM 

Function: Writes a single 32-bit word to the specified address in the receive RAM. 
Input: Address offset and data value to write (BAE9_MEM_WORD_WRITE structure) 
Output: None 
Notes: See the definition of BAE9_MEM_WORD_WRITE below.  Address indexes 32-
bit words and has a maximum value of 0x7FF (8 Kbytes). 
 

typedef struct _BAE9_MEM_WORD_WRITE { 

  ULONG    Address;  // RAM address offset 

  ULONG    Data;     // RAM data to write 

} BAE9_MEM_WORD_WRITE; 



               Embedded Solutions                       Page 13 of 23 

IOCTL_BAE9_CHAN_READ_RX_RAM 

Function: Reads a single 32-bit word from the specified address in the receive RAM. 
Input: Address (unsigned long integer) 
Output: Data (unsigned long integer) 
Notes: Address indexes 32-bit words and has a maximum value of 0x7FF (8 Kbytes). 

 
IOCTL_BAE9_CHAN_SET_TX_DMA_OFFSET 

Function: Specifies the transmit RAM starting address offset for the next write DMA. 
Input: Byte Address (unsigned long integer) 
Output: None 
Notes: The byte address is used by the driver to calculate the Local Address field of the 
DMA chaining descriptors.  This is a byte address and the two least significant bits will 
be stripped by the hardware to create the actual RAM address when the DMA is 
executed.  Only long words can be addressed, individual byte operations are not 
supported.  The address can be any value divisible by four from 0 to 0x3FFC. 

 
IOCTL_BAE9_CHAN_SET_RX_DMA_OFFSET 

Function: Specifies the receive RAM starting address offset for the next read DMA. 
Input: Byte Address (unsigned long integer) 
Output: None 
Notes: The byte address is used by the driver to calculate the Local Address field of the 
DMA chaining descriptors.  This is a byte address and the two least significant bits will 
be stripped by the hardware to create the actual RAM address when the DMA is 
executed.  Only long words can be addressed, individual byte operations are not 
supported.  The address can be any value divisible by four from 0 to 0x1FFC. 

 
IOCTL_BAE9_CHAN_SET_TX_IO_OFFSET 

Function: Specifies the transmit RAM starting address offset for the next message to send. 
Input: Word Address (unsigned long integer) 
Output: None 
Notes: The address indexes 32-bit words and can be any value between 0 and 0xFFF. 

 
IOCTL_BAE9_CHAN_SET_RX_IO_OFFSET 

Function: Specifies the receive RAM starting address offset for storing the next received 
message. 
Input: Word Address (unsigned long integer) 
Output: None 
Notes: The address indexes 32-bit words and can be any value between 0 and 0x7FF. 



               Embedded Solutions                       Page 14 of 23 

IOCTL_BAE9_CHAN_GET_TX_ADDR_OFFSETS 

Function: Returns the next transmit RAM address offsets for write DMA and transmit I/O. 
Input: None 
Output: BAE9_MEM_ADDR_OFFSETS 
Notes: See the definition of BAE9_MEM_ADDR_OFFSETS below.  The DMA Address 
field is latched at the end of the last DMA, a new DMA offset will not affect this value 
until a new DMA is performed. 
 

typedef struct _BAE9_MEM_ADDR_OFFSETS { 

  USHORT  DmaAddr;  // Starting address for next DMA 

  USHORT  IoAddr;   // Next address for I/O read/write 

} BAE9_MEM_ADDR_OFFSETS; 

 
IOCTL_BAE9_CHAN_GET_RX_ADDR_OFFSETS 

Function: Returns the next receive RAM address offsets for read DMA and receive I/O. 
Input: None 
Output: BAE9_MEM_ADDR_OFFSETS 
Notes: See the definition of BAE9_MEM_ADDR_OFFSETS above.  The DMA Address 
field is latched at the end of the last DMA, a new DMA offset will not affect this value 
until a new DMA is performed. 

 
IOCTL_BAE9_CHAN_SET_TRIG_CONFIG 

Function: Specifies the count value limits for the trigger monitor limit latches. 
Input: BAE9_CHAN_TRIG_CONFIG 
Output: None 
Notes: The field counts for the on and off, min and max limits were increased from 16 to 
22 bits in design rev. D.  See the definition of BAE9_CHAN_TRIG_CONFIG below. 
 

typedef struct _BAE9_CHAN_TRIG_CONFIG { 

// Change for firmware rev.D: The following fields were increased from 

 //  16 to 22 bits, which required changing the field type to ULONG 

  ULONG    OnMaxLimit;    // Max count for trigger = '1' 

  ULONG    OnMinLimit;    // Min count for trigger = '1' 

  ULONG    OffMaxLimit;   // Max count for trigger = '0' 

  ULONG    OffMinLimit;   // Min count for trigger = '0' 

} BAE9_CHAN_TRIG_CONFIG; 



               Embedded Solutions                       Page 15 of 23 

IOCTL_BAE9_CHAN_READ_TRIG_PARAMS 

Function: Returns the state of the four limit latches and the time counts of the last high and 
low logic levels for the discrete input trigger signal. 
Input: None 
Output: BAE9_CHAN_TRIG_STATE 
Notes: The field counts for the OnTime and OffTime were increased from 16 to 22 bits 
in design rev. D.  The ability to output a constant level was also added.  See the 
definition of BAE9_CHAN_TRIG_STATE below. 
 

typedef struct _BAE9_CHAN_TRIG_STATE { 

  BOOLEAN  OnOverLat;     // Max count exceeded (trigger = '1') 

  BOOLEAN  OnUnderLat;    // Min count not reached (trigger = '1') 

  BOOLEAN  OffOverLat;    // Max count exceeded (trigger = '0') 

  BOOLEAN  OffUnderLat;   // Min count not reached (trigger = '0') 

 // Change for firmware rev.D: The following fields were increased from 

 //  16 to 22 bits, which required changing the field type to ULONG 

  ULONG    OnTime;        // Time count for last '1' level 

  ULONG    OffTime;       // Time count for last '0' level 

} BAE9_CHAN_TRIG_STATE; 

 
IOCTL_BAE9_CHAN_CLEAR_TRIG_COUNTS 

Function: Stops the trigger monitor high and low level counters and clears the counts. 
Input: None 
Output: None 
Notes: The ability to detect a constant level trigger input was added in design rev. E.  
This call is used in preparation for detecting such a signal.  The trigger monitor counters 
are halted and cleared and they will not start again until a rising or falling edge occurs 
on the selected trigger input signal. 

 
IOCTL_BAE9_CHAN_READ_TRIG_LEVEL 

Function: Reports a steady-state on the trigger input signal for the selected channel. 
Input: None 
Output: BAE9_CHAN_TRIG_LEVEL 
Notes: The ability to detect a constant level trigger input was added in design rev. E.  If 
the trigger input signal for the selected channel stays at a constant level after the 
counters were cleared, one of the two fields in the output structure will be true and the 
other will be false depending on the polarity of the signal.  See the definition of 
BAE9_CHAN_TRIG_LEVEL below. 
 

 // Change for firmware rev.E: The following structure was added 

typedef struct _BAE9_CHAN_TRIG_LEVEL { 

  BOOLEAN  Level_0;  // True if trigger signal is steady-state '0' 

  BOOLEAN  Level_1;  // True if trigger signal is steady-state '1' 

} BAE9_CHAN_TRIG_LEVEL; 



               Embedded Solutions                       Page 16 of 23 

IOCTL_BAE9_CHAN_SET_DISC_OUT_CONFIG 

Function: Specifies various parameters that control the behavior of the discrete output signal. 
Input:  
Output: None 
Notes: The field counts for the Delay, Period and Duty (cycle) were increased from 16 
to 22 bits in design rev. D.  The ability to output a constant level was also added.  See 
the definition BAE9_CHAN_DISC_OUT_CONFIG below. 
 

typedef enum _BAE9_CHAN_OUT_MODE { 

  BAE9_TRIGGERED, 

  BAE9_PERIODIC, 

  BAE9_ONE_SHOT, 

  BAE9_TRIG_PERIODIC 

} BAE9_CHAN_OUT_MODE; 

 

typedef struct _BAE9_CHAN_DISC_OUT_CONFIG { 

  BOOLEAN              Enable;        // Enable discrete output signal 

 // Change for firmware rev.D: The following fields were increased from 

 //  16 to 22 bits, which required changing the field type to ULONG 

  ULONG                Delay;         // Delay count after trigger seen 

  ULONG                Period;        // Count for full cycle 

  ULONG                Duty;          // Count for active part of cycle 

  BAE9_CHAN_OUT_MODE   Mode;          // Mode of operation (see above) 

  BOOLEAN              LevelOut;      // Outputs a constant level 

  BOOLEAN              InvTrigger;    // Invert the trigger input 

  BOOLEAN              InvOutput;     // Invert the signal output 

} BAE9_CHAN_DISC_OUT_CONFIG; 



               Embedded Solutions                       Page 17 of 23 

IOCTL_BAE9_CHAN_SET_TX_CONFIG 

Function: Specifies various parameters that control the behavior of the transmitter. 
Input: BAE9_CHAN_TX_CONFIG structure 
Output: None 
Notes: See the definition of BAE9_CHAN_TX_CONFIG and BAE9_CHAN_PAR_SEL 
below and the definition of BAE9_CHAN_OUT_MODE above. 
 

typedef enum _BAE9_CHAN_PAR_SEL { 

  BAE9_NONE, 

  BAE9_ODD, 

  BAE9_EVEN, 

  BAE9_MARK, 

  BAE9_SPACE 

} BAE9_CHAN_PAR_SEL; 

 

typedef struct _BAE9_CHAN_TX_CONFIG { 

  BOOLEAN             TxIntEnable;  // Transmit done interrupt enable 

  BOOLEAN             ClearEnable;  // Enable clearing start bit when done 

  BOOLEAN             StopTwoSel;   // Use two stop-bits in serial output 

  BAE9_CHAN_PAR_SEL   Parity;       // Parity definition (see above) 

  USHORT              Delay;        // Delay count after trigger seen 

  USHORT              Period;       // Count for full cycle 

  BAE9_CHAN_OUT_MODE  Mode;         // Mode of operation (see above) 

  BOOLEAN             InvTrigger;   // Invert the trigger input 

} BAE9_CHAN_TX_CONFIG; 

 
IOCTL_BAE9_CHAN_GET_TX_STATE 

Function: Returns the parameters set in the previous call as well as the state of the 
transmitter enable bit. 
Input: None 
Output: BAE9_CHAN_TX_STATE structure 
Notes: If the ClearEnable field has been set to true, the Enabled field can be monitored 
to indicate when the current message has completed.  See the definition of 
BAE9_CHAN_TX_STATE below. 
 

typedef struct _BAE9_CHAN_TX_STATE { 

  BOOLEAN             Enabled;      // Transmitter is enabled (read only) 

  BOOLEAN             TxIntEnable; 

  BOOLEAN             ClearEnable; 

  BOOLEAN             StopTwoSel; 

  BAE9_CHAN_PAR_SEL   Parity; 

  BAE9_CHAN_OUT_MODE  Mode; 

  BOOLEAN             InvTrigger; 

} BAE9_CHAN_TX_STATE; 



               Embedded Solutions                       Page 18 of 23 

IOCTL_BAE9_CHAN_SET_RX_CONFIG 

Function: Specifies various parameters that control the behavior of the receiver. 
Input: BAE9_CHAN_RX_CONFIG structure 
Output: None 
Notes: TermEnable activates the 100Ω shunt termination on the receive data lines.  
When the interface is operating in half-duplex mode, the termination will only be active 
when the transmitter is not active.  See the definition of BAE9_CHAN_RX_CONFIG 
below. 
 

typedef struct _BAE9_CHAN_RX_CONFIG { 

  BOOLEAN            RxIntEnable;  // Receive done interrupt enable 

  BOOLEAN            ClearEnable;  // Enable clearing start bit when done 

  BOOLEAN            TermEnable;   // Enable the termination for the I/O line 

  BOOLEAN            StopTwoSel;   // Check two stop-bits in serial input 

  BOOLEAN            PerrIntEn;    // Parity error interrupt enable 

  BOOLEAN            FerrIntEn;    // Framing error interrupt enable 

  BAE9_CHAN_PAR_SEL  Parity;       // Parity definition (see above) 

} BAE9_CHAN_RX_CONFIG; 

 
IOCTL_BAE9_CHAN_GET_RX_STATE 

Function: Returns the parameters set in the previous call as well as the state of the receiver 
enable bit. 
Input: None 
Output: BAE9_CHAN_RX_STATE structure 
Notes: If the ClearEnable field has been set to true, the Enabled field can be monitored 
to indicate when the current message has completed.  See the definition of 
BAE9_CHAN_RX_STATE below. 
 

typedef struct _BAE9_CHAN_RX_STATE { 

  BOOLEAN            Enabled;      // Receiver is enabled (read only) 

  BOOLEAN            RxIntEnable; 

  BOOLEAN            ClearEnable; 

  BOOLEAN            TermEnable; 

  BOOLEAN            StopTwoSel; 

  BOOLEAN            PerrIntEn; 

  BOOLEAN            FerrIntEn; 

  BAE9_CHAN_PAR_SEL  Parity; 

} BAE9_CHAN_RX_STATE; 

 
IOCTL_BAE9_CHAN_START_TX 

Function: Starts a data transmission. 
Input: Number of bytes to send (unsigned short integer) 
Output: None 
Notes: The specified number of bytes will be sent. 



               Embedded Solutions                       Page 19 of 23 

IOCTL_BAE9_CHAN_STOP_TX 

Function: Abort or cancel a data transmission. 
Input: None 
Output: None 
Notes: This call will cancel a transmit request that has not started or stop a 
transmission in progress. 

 
IOCTL_BAE9_CHAN_START_RX 

Function: Enables the receiver to look for data and store it in the receive RAM. 
Input: None 
Output: None 
Notes: The first word of each stored message will be a status word.  The upper 16 bits 
contain the number of bytes received in the message.  The lower 16 bits contain the 
word address of the start of the next message i.e. the status word for that message.  
The message data starts with the next word after the status word. 

 
IOCTL_BAE9_CHAN_STOP_RX 

Function: Abort or cancel data reception. 
Input: None 
Output: None 
Notes: This call will cancel a receive request that has not started or stop a reception in 
progress.  It also disables the receiver when data reception is no longer desired. 

 
IOCTL_BAE9_CHAN_GET_RX_BYTE_COUNT 

Function: Returns the number of bytes received in the last message. 
Input: None 
Output: Received byte count (unsigned short integer) 
Notes: Each channel contains a 16-bit counter that increments each time a data byte is 
received.  When the received data input is high for at least 8 bit-periods after the end of 
a data-byte, the receiver sets the STAT_RX_INT status bit, transfers this count to the 
byte-count register and clears the counter for the next message.  The byte-count 
register value is returned by this call.  The value will remain valid until the end of a 
subsequent message. 



               Embedded Solutions                       Page 20 of 23 

IOCTL_BAE9_CHAN_REGISTER_EVENT 

Function: Registers an event to be signaled when an interrupt occurs. 
Input: Handle to the Event object 
Output: None 
Notes: The caller creates an event with CreateEvent() and supplies the handle returned 
from that call as the input to this IOCTL.  The driver then obtains a system pointer to the 
event and signals the event when a user interrupt is serviced.  The user interrupt 
service routine waits on this event, allowing it to respond to the interrupt.  The DMA 
interrupts do not cause the event to be signaled. 

 
IOCTL_BAE9_CHAN_ENABLE_INTERRUPT 

Function: Enables the master interrupt. 
Input: None 
Output: None 
Notes: This command must be run to allow the board to respond to user interrupts.  
The master interrupt enable is disabled in the driver interrupt service routine.  Therefore 
this command must be run after each user interrupt occurs to re-enable the interrupts. 

 
IOCTL_BAE9_CHAN_DISABLE_INTERRUPT 

Function: Disables the master interrupt. 
Input: None 
Output: None 
Notes: This call is used when user interrupt processing is no longer desired. 

 
IOCTL_BAE9_CHAN_FORCE_INTERRUPT 

Function: Causes a system interrupt to occur. 
Input: None 
Output: None 
Notes: Causes an interrupt to be asserted on the PCI bus if the master interrupt is 
enabled.  This IOCTL is used for test and development, to test interrupt processing. 



               Embedded Solutions                       Page 21 of 23 

IOCTL_BAE9_CHAN_GET_ISR_STATUS 

Function: Returns the interrupt status read in the ISR from the last user interrupt. 
Input: None 
Output: Interrupt status value (BAE9_CHAN_INT_STAT) 
Notes: Returns the status that was read in the interrupt service routine for the last user 
interrupt serviced.  Latched status bits (bits in STATUS_LATCH_MASK) that were set 
when the status was read in the ISR are returned along with the other status bits, but 
will have been automatically cleared in the interrupt DPC.  See the definition of 
BAE9_CHAN_INT_STAT below. 
 

typedef struct _BAE9_CHAN_INT_STAT { 

  ULONG    Status;  // Value of status register read in ISR 

  BOOLEAN  New;     // True if the status has changed since the last call 

} BAE9_CHAN_INT_STAT; 



               Embedded Solutions                       Page 22 of 23 

Write 

PMC-BiSerial-III BAE9 DMA data is written to the device using the write command.  
Writes are executed using the Win32 function WriteFile() and passing in the handle to 
the target device, a pointer to a pre-allocated buffer containing the data to be written, an 
unsigned long integer that represents the number of bytes to be transferred, a pointer to 
an unsigned long integer to contain the number of bytes actually written, and a pointer 
to an optional Overlapped structure for performing asynchronous I/O.  The data will be 
written to the transmit RAM starting at the byte address specified by the 
IOCTL_BAE9_CHAN_SET_TX_DMA_OFFSET call. 

Read 

PMC-BiSerial-III BAE9 DMA data is read from the device using the read command.  
Reads are executed using the Win32 function ReadFile() and passing in the handle to 
the target device, a pointer to a pre-allocated buffer that will contain the data read, an 
unsigned long integer that represents the number of bytes to be transferred, a pointer to 
an unsigned long integer to contain the number of bytes actually read, and a pointer to 
an optional Overlapped structure for performing asynchronous I/O.  The data will be 
read from the receive RAM starting at the byte address specified by the 
IOCTL_BAE9_CHAN_SET_RX_DMA_OFFSET call. 

Warranty and Repair 

Dynamic Engineering warrants this product to be free from defects under normal use 
and service and in its original, unmodified condition, for a period of one year from the 
time of purchase.  If the product is found to be defective within the terms of this 
warranty, Dynamic Engineering's sole responsibility shall be to repair, or at Dynamic 
Engineering's sole option to replace, the defective product. 
 
Dynamic Engineering's warranty of and liability for defective products is limited to that 
set forth herein.  Dynamic Engineering disclaims and excludes all other product 
warranties and product liability, expressed or implied, including but not limited to any 
implied warranties of merchandisability or fitness for a particular purpose or use, liability 
for negligence in manufacture or shipment of product, liability for injury to persons or 
property, or for any incidental or consequential damages. 
 
Dynamic Engineering’s products are not authorized for use as critical components in life 
support devices or systems without the express written approval of the president of 
Dynamic Engineering. 



               Embedded Solutions                       Page 23 of 23 

Service Policy 

Before returning a product for repair, verify as well as possible that the driver is at fault.  
The driver has gone through extensive testing and in most cases it will be “cockpit error” 
rather than an error with the driver.  When you are sure or at least willing to pay to have 
someone help then call the Customer Service Department and arrange to speak with an 
engineer.  We will work with you to determine the cause of the issue.  If the issue is one 
of a defective driver we will correct the problem and provide an updated module(s) to 
you [no cost].  If the issue is of the customer’s making [anything that is not the driver] 
the engineering time will be invoiced to the customer.  Pre-approval may be required in 
some cases depending on the customer’s invoicing policy. 

Out of Warranty Repairs 

Out of warranty support will be billed.  The current minimum repair charge is $125.  An 
open PO will be required. 

For Service Contact: 

Customer Service Department 
Dynamic Engineering 
150 DuBois, Suite C Santa Cruz, CA 95060 
(831) 457-8891 Fax (831) 457-4793 
support@dyneng.com 
 
All information provided is Copyright Dynamic Engineering. 

mailto:support@dyneng.com

