
DYNAMIC ENGINEERING
150 DuBois, Suite C

Santa Cruz, CA 95060
(831) 457-8891 Fax (831) 457-4793

http://www.dyneng.com
sales@dyneng.com

Est. 1988

SpWrBase
&

SpWrChan

Driver Documentation

For the PMC SpaceWire-BK

Developed with Windows Driver Foundation

Revision A
Corresponding Hardware:

10-2004-0805
Corresponding Firmware: Revision A

http://www.dyneng.com/
mailto:dedra@dyneng.com

 Embedded Solutions Page 2 of 17

SpWrBase, SpWrChan
WDF Device Drivers for the
PMC-SpaceWire-BK
4-Channel SpaceWire Interface

Dynamic Engineering
150 DuBois, Suite C
Santa Cruz, CA 95060
(831) 457-8891
FAX: (831) 457-4793

This document contains information of
proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the
recipient, by accepting this material, agrees that
the subject matter will not be copied or
reproduced, in whole or in part, nor its contents
revealed in any manner or to any person except
to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to
ensure that this manual is accurate and
complete. Still, the company reserves the right to
make improvements or changes in the product
described in this document at any time and
without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of
the application or use of the device described
herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this equipment
in a residential area is likely to cause radio
interference, in which case the user, at his own
expense, will be required to take whatever
measures may be required to correct the
interference.

Dynamic Engineering’s products are not
authorized for use as critical components in life
support devices or systems without the express
written approval of the president of Dynamic
Engineering.

Connection of incompatible hardware is likely to
cause serious damage.

©2014 by Dynamic Engineering.
Other trademarks and registered trademarks are owned by
their respective manufacturers.
Manual Revision A: Revised September 2, 2014

 Embedded Solutions Page 3 of 17

Table of Contents

Introduction .. 4
Note ... 4
Driver Installation ... 5
Windows XP Installation ... 6
Windows 7 Installation .. 6
Driver Startup ... 7
IO Controls ... 7

IOCTL_SPWR_BASE_GET_INFO .. 7
IOCTL_SPWR_BASE_LOAD_PLL_DATA .. 8
IOCTL_SPWR_BASE_READ_PLL_DATA .. 8
IOCTL_SPWR_BASE_SET_TIME_CONFIG .. 9
IOCTL_SPWR_BASE_GET_TIME_CONFIG ... 9
IOCTL_SPWR_CHAN_GET_INFO ... 10
IOCTL_SPWR_CHAN_SET_CONFIG .. 10
IOCTL_SPWR_CHAN_GET_CONFIG .. 11
IOCTL_SPWR_CHAN_GET_STATUS ... 11
IOCTL_SPWR_CHAN_WRITE_PACKET_LENGTH .. 12
IOCTL_SPWR_CHAN_READ_PACKET_LENGTH ... 12
IOCTL_SPWR_CHAN_SET_FIFO_LEVELS .. 13
IOCTL_SPWR_CHAN_GET_FIFO_LEVELS ... 13
IOCTL_SPWR_CHAN_GET_FIFO_COUNTS .. 13
IOCTL_SPWR_CHAN_RESET_FIFOS .. 14
IOCTL_SPWR_CHAN_WRITE_FIFO ... 14
IOCTL_SPWR_CHAN_READ_FIFO ... 14
IOCTL_SPWR_CHAN_REGISTER_EVENT ... 14
IOCTL_SPWR_CHAN_ENABLE_INTERRUPT .. 15
IOCTL_SPWR_CHAN_DISABLE_INTERRUPT ... 15
IOCTL_SPWR_CHAN_FORCE_INTERRUPT .. 15
IOCTL_SPWR_CHAN_GET_ISR_STATUS ... 15
IOCTL_SPWR_CHAN_READ_TIME_CODE .. 16

Write .. 16
Read .. 16

Warranty and Repair ... 17
Service Policy ... 17

Out of Warranty Repairs .. 17
For Service Contact: .. 17

 Embedded Solutions Page 4 of 17

Introduction

The SpWrBase and SpWrChan drivers are Windows device drivers for the PMC-
SpaceWire Windows device drivers for the PMC-SpaceWire-BK. These drivers were
developed with the Windows Driver Foundation version 1.9 (WDF) from Microsoft,
specifically the Kernel-Mode Driver Framework (KMDF).

The SpaceWire board has a Spartan6 Xilinx FPGA to implement the PCI interface,
FIFOs and protocol control and status for four SpaceWire channels. There is also a
programmable PLL with four clock outputs to create separate programmable I/O clocks
for each SpaceWire channel. Each channel has two 16k x 32-bit internal data FIFOs
and two 1023 x 32-bit packet-length FIFOs.

The SpWrChan driver has been extended to recognize and control an I/O channel using
external FIFOs (128 K by 32 bits) as well as the standard internal FIFO (1 K by 32 bits)
channel. In order to accommodate this, the data structure fields representing the FIFO
counts and programmable almost full/empty levels have been changed to 32-bit values.
Also, Tx and Rx FIFO size fields have been added to the channel info structure. When
the channel driver initializes, it checks the channel control register. If bits 22 and/or 23
can be cleared, it has detected an external FIFO channel and proceeds to write and
read to the programmable almost empty/full registers of the FIFO. Depending on what
value is returned, the size of the external FIFO is detected and default values for the Tx
almost empty and/or Rx almost full values are written to the FIFO (⅛ and ⅞ of the FIFO
size respectively).

When the SpaceWire board is recognized by the PCI bus configuration utility it will load
the SpWrBase driver which will create a device object for each board, initialize the
hardware, create child devices for the four I/O channels and request loading of the
SpWrChan driver. The SpWrChan driver will create a device object for each of the I/O
channels and perform initialization on each channel. IO Control calls (IOCTLs) are used
to configure the board and read status. Read and Write calls are used to move blocks
of data in and out of the I/O channel devices.

Note

This documentation will provide information about all calls made to the drivers, and how
the drivers interact with the device for each of these calls. For more detailed
information on the hardware implementation, refer to the SpaceWireBk hardware
manual.

 Embedded Solutions Page 5 of 17

Driver Installation

There are several files provided in each driver package. These files include
SpWrPublic.h, SpWrBase.inf, SpWrBase.cat, SpWrBase.sys, SpWrBasePublic.h,
SpWrChan.inf, SpWrChan.cat, SpWrChan.sys, SpWrChanPublic.h,
WdfCoInstaller01009.dll, spwr_test.exe and spwr_test source files spwr_test.cpp and
spwr_test.hpp.

SpWrBasePublic.h and SpWrChanPublic.h are C header files that define the Application
Program Interface (API) for the SpWrBase and SpWrChan drivers. These files are
required at compile time by any application that wishes to interface with the drivers, but
are not needed for driver installation.

The executable spwr_test.exe is a menu-based console application that makes calls
into the SpWrBase / SpWrChan drivers to test each driver call without actually writing
any application code. It is not required during the driver installation.

To run spwr_test.exe, simply double-click on the test icon. A console window will open
and the menu will be printed. Select a menu item and follow the prompts to execute the
call.

 Embedded Solutions Page 6 of 17

Windows XP Installation

Copy SpWrBase.inf, SpWrBase.cat, SpWrBase.sys, SpWrChan.inf, SpWrChan.cat,
SpWrChan.sys and WdfCoInstaller01009.dll (XP version) to a floppy disk, CD or USB
memory device as preferred.

With the PMC-SpaceWire BK hardware installed, power-on the PCI host computer and
wait for the Found New Hardware Wizard dialogue window to appear.

 Insert the disk or memory device prepared above in the desired drive.

 Select No when asked to connect to Windows Update.

 Select Next.

 Select Install the software automatically. (If not found go to the next line)

 Select Install the software from a specific location. (Specify your file’s location)

 Select Next.

 Select Finish to close the Found New Hardware Wizard.
The system should now see the SpWr I/O channels and reopen the New Hardware
Wizard. Proceed as above for each channel as necessary.

Windows 7 Installation

Copy SpWrBase.inf, SpWrBase.cat, SpWrBase.sys, SpWrChan.inf, SpWrChan.cat,
SpWrChan.sys and WdfCoInstaller01009.dll (Win7 version) to a floppy disk, CD or USB
memory device as preferred.

With the PMC-SpaceWire BK hardware installed, power-on the PCI host computer.

 Open the Device Manager from the control panel.

 Under Other devices there should be an Other PCI Bridge Device*.

 Right-click on the Other PCI Bridge Device and select Update Driver Software.

 Insert the disk or memory device prepared above in the desired drive.

 Select Browse my computer for driver software.

 Select Let me pick from a list of device drivers on my computer.

 Select Next.

 Select Have Disk and enter the path to the device prepared above.

 Select Next.

 Select Close to close the update window.
The system should now display the SpWr I/O channels in the Device Manager.

 Right-click on each channel icon, select Update Driver Software and proceed as
before.

* If the Other PCI Bridge Device is not displayed, click on the Scan for hardware
changes icon on the tool-bar.

 Embedded Solutions Page 7 of 17

Driver Startup

Once the driver has been installed it will start automatically when the system recognizes
the hardware.

A handle can be opened to a specific board by using the CreateFile() function call and
passing in the device name obtained from the system.

The interface to the device is identified using a globally unique identifier (GUID), which
is defined in SpWrBasePublic.h and SpWrChanPublic.h. See main.c in the
SpWrBkUserApp project for an example of how to acquire handles for the base and four
channel devices.

Note: In order to build an application you must link with setupapi.lib.

IO Controls

The drivers use IO Control calls (IOCTLs) to configure the device. IOCTLs refer to a
single Device Object, which controls a single board or I/O channel. IOCTLs are called
using the Win32 function DeviceIoControl() (see below), and passing in the handle to
the device opened with CreateFile() (see above). IOCTLs generally have input
parameters, output parameters, or both. Often a custom structure is used.

BOOL DeviceIoControl(

 HANDLE hDevice, // Handle opened with CreateFile()

 DWORD dwIoControlCode, // Control code defined in API header file

 LPVOID lpInBuffer, // Pointer to input parameter

 DWORD nInBufferSize, // Size of input parameter

 LPVOID lpOutBuffer, // Pointer to output parameter

 DWORD nOutBufferSize, // Size of output parameter

 LPDWORD lpBytesReturned, // Pointer to return length parameter

 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped structure

); // used for asynchronous I/O

The IOCTLs defined for the SpWrBase driver are described below:

IOCTL_SPWR_BASE_GET_INFO

Function: Returns the device driver version, design version, design type, user switch value,
device instance number and PLL device ID.
Input: None
Output: SPWR_BASE_DRIVER_DEVICE_INFO structure
Notes: The switch value is the configuration of the 8-bit onboard dipswitch that has
been selected by the user (see the board silk screen for bit position and polarity).
Instance number is the zero-based device number. See the definition of
SPWR_BASE_DRIVER_DEVICE_INFO below.

 Embedded Solutions Page 8 of 17

 // Driver/Device information

typedef struct _SPWR_BASE_DRIVER_DEVICE_INFO {

 UCHAR DriverVersion;

 UCHAR DesignVersion;

 UCHAR DesignType;

 UCHAR SwitchValue;

 ULONG InstanceNumber;

 UCHAR PllDeviceId;

} SPWR_BASE_DRIVER_DEVICE_INFO, *PSPWR_BASE_DRIVER_DEVICE_INFO;

IOCTL_SPWR_BASE_LOAD_PLL_DATA

Function: Writes to the internal registers of the PLL.
Input:
SPWR_BASE_PLL_DATA structure
Output: None
Notes: The SPWR_BASE_PLL_DATA structure has only one field: Data – an array of
40 bytes containing the PLL register data to write. See below for the definition of
SPWR_BASE_PLL_DATA.

 // Structures for IOCTLs

#define PLL_MESSAGE1_SIZE 16

#define PLL_MESSAGE2_SIZE 24

#define PLL_MESSAGE_SIZE (PLL_MESSAGE1_SIZE + PLL_MESSAGE2_SIZE)

typedef struct _SPWR_BASE_PLL_DATA {

 UCHAR Data[PLL_MESSAGE_SIZE];

} SPWR_BASE_PLL_DATA;

IOCTL_SPWR_BASE_READ_PLL_DATA

Function: Returns the contents of the internal registers of the PLL.
Input: None
Output: SPWR_BASE_PLL_DATA structure
Notes: The register data is written to the SPWR_BASE_PLL_DATA structure in an
array of 40 bytes. See definition of SPWR_BASE_PLL_DATA above.

 Embedded Solutions Page 9 of 17

IOCTL_SPWR_BASE_SET_TIME_CONFIG

Function: Sets the time-code timing and routing on the SpaceWire board.
Input: SPWR_BASE_TIME_CONFIG structure
Output: None
Notes: The master counter that controls the TICK_IN rate is clocked by the 80 MHz link
clock. Count, in the input data structure is the count at which the master counter will
roll-over, increment the six-bit time-code count and issue a TICK_IN pulse. Flags
specifies the two control flag bits sent in bit 6 and 7 of the time-code data byte.
TimeSource is a four-value array of SPWR_TM_SRC values that determine the source
of time-codes sent by each of the four channels. These values specify one of the
following six time-code sources: Master timer, any of the four channel’s time-code
outputs, or none (disabled). See below for the definition of SPWR_TM_SRC
SPWR_BASE_TIME_CONFIG.

typedef enum _SPWR_TM_SRC {

 SPWRDISABLE,

 SPWRMASTER,

 SPWRCHAN0,

 SPWRCHAN1,

 SPWRCHAN2,

 SPWRCHAN3

} SPWR_TM_SRC, *PSPWR_TM_SRC;

typedef struct _SPWR_BASE_TIME_CONFIG {

 ULONG Count;

 UCHAR Flags;

 SPWR_TM_SRC TimeSource[SPWR_NUM_CHANNELS];

} SPWR_BASE_TIME_CONFIG, *PSPWR_BASE_TIME_CONFIG;

IOCTL_SPWR_BASE_GET_TIME_CONFIG

Function: Returns the time-code timing and routing on the SpaceWire board.
Input: None
Output: SPWR_BASE_TIME_CONFIG structure
Notes: Returns the values set in the previous call.

 Embedded Solutions Page 10 of 17

The IOCTLs defined for the SpWrChan driver are described below:

IOCTL_SPWR_CHAN_GET_INFO

Function: Returns the driver version, instance number and transmit and receive FIFO sizes.
Input: None
Output: SPWR_CHAN_DRIVER_DEVICE_INFO structure
Notes: See the definition of SPWR_CHAN_DRIVER_DEVICE_INFO below.

// Driver/Device information

typedef struct _SPWR_CHAN_DRIVER_DEVICE_INFO {

 UCHAR DriverVersion;

 ULONG InstanceNumber;

 ULONG TxFifoSize;

 ULONG RxFifoSize;

} SPWR_CHAN_DRIVER_DEVICE_INFO, *PSPWR_CHAN_DRIVER_DEVICE_INFO;

IOCTL_SPWR_CHAN_SET_CONFIG

Function: Specifies the channel control configuration.
Input: SPWR_CHAN_CONFIG structure
Output: None
Notes: Specifies the link startup behavior, enabled interrupt sources, DMA preemption
behavior, DMA status and other control parameters. See the definitions of
SPWR_START, SPWR_INTS, SPWR_DMA_PRMPT, SPWR_DMA_STAT and
SPWR_CHAN_CONFIG below.

typedef enum _SPWR_START {

 SPWR_STOP, // Channel link not connected

 SPWR_ISTRT, // Channel initiates link

 SPWR_ASTRT // Channel waits for a NULL to be received

} SPWR_START, *PSPWR_START;

typedef struct _SPWR_INTS {

 BOOLEAN TxAmtInt; // Transmit FIFO almost empty interrupt

 BOOLEAN RxAflInt; // Receive FIFO almost full interrupt

 BOOLEAN RxErrInt; // Reception error interrupt

 BOOLEAN RxPktInt; // Packet received interrupt

 BOOLEAN TmTckInt; // Time-code tick interrupt

} SPWR_INTS, *PSPWR_INTS;

 // Channel DMA priority (use sparingly)

typedef enum _SPWR_DMA_PRMPT {

 SPWR_NONE, // No priority

 SPWR_READ, // Read DMA has priority

 SPWR_WRITE, // Write DMA has priority

 SPWR_RDWR // Read and Write DMA have priority

} SPWR_DMA_PRMPT, *PSPWR_DMA_PRMPT;

 Embedded Solutions Page 11 of 17

typedef enum _SPWR_DMA_STAT {

 SPWR_BUSY, // Read and Write DMA both active

 SPWR_RD_RDY, // Read DMA idle

 SPWR_WR_RDY, // Write DMA idle

 SPWR_BOTH_RDY // Read and Write DMA both idle

} SPWR_DMA_STAT, *PSPWR_DMA_STAT;

typedef struct _SPWR_CHAN_CONFIG {

 UCHAR ClockDivide; // (1..16) PLL frequency/ClockDivide = I/O

bit rate

 SPWR_START StartMode; // Link start mode (initiate or auto-start)

 SPWR_INTS IntConfig; // Interrupt condition enables

 BOOLEAN NoPackets; // Disable packets

 BOOLEAN ReusePktLen; // Reuse a single packet-length

 BOOLEAN VldRxPktLen; // Return only valid Rx packet-lengths

 BOOLEAN FifoBypassEn; // Enables auto tx->rx FIFO transfer

 SPWR_DMA_PRMPT DmaPriority; // DMA preemption control

 SPWR_DMA_STAT DmaStatus; // DMA status (read-only)

} SPWR_CHAN_CONFIG, *PSPWR_CHAN_CONFIG;

IOCTL_SPWR_CHAN_GET_CONFIG

Function: Returns the fields set in the previous call.
Input: None
Output: SPWR_CHAN_CONFIG structure
Notes: See the definitions of SPWR_START, SPWR_INTS, SPWR_DMA_PRMPT,
SPWR_DMA_STAT and SPWR_CHAN_CONFIG above.

IOCTL_SPWR_CHAN_GET_STATUS

Function: Returns the channel’s status register value and clears the latched status bits.
Input: None
Output: Value of the channel’s status register (unsigned long integer)
Notes: See the status bit definitions below. Only the bits in CHAN_STAT_MASK will be
returned. The bits in CHAN_STAT_LATCH_MASK will be cleared by this call only if
they are set when the register was read. This prevents the possibility of missing an
interrupt condition that occurs after the register has been read but before the latched
register bits are cleared.

 // Status bit definitions

#define CHAN_STAT_TX_FF_MT 0x00000001 // Transmit FIFO empty

#define CHAN_STAT_TX_FF_AMT 0x00000002 // Transmit FIFO almost empty

#define CHAN_STAT_TX_FF_FL 0x00000004 // Transmit FIFO full

#define CHAN_STAT_TX_FF_VLD 0x00000008 // Transmit data valid (data in waiting to send latch)

#define CHAN_STAT_RX_FF_MT 0x00000010 // Receive FIFO empty

#define CHAN_STAT_RX_FF_AFL 0x00000020 // Receive FIFO almost full

#define CHAN_STAT_RX_FF_FL 0x00000040 // Receive FIFO full

#define CHAN_STAT_RX_FF_VLD 0x00000080 // Receive data valid (data in pipeline (4 words))

#define CHAN_STAT_PAR_ERR 0x00000100 // Parity error

#define CHAN_STAT_DSCNCT 0x00000200 // Disconnect error (no activity for > 850 ns)

#define CHAN_STAT_ESC_ERR 0x00000400 // Escape error (invalid escape sequence)

#define CHAN_STAT_CRDT_ERR 0x00000800 // Credit error (transmit or receive credit violation)

#define CHAN_STAT_RX_OVFL 0x00001000 // Receive FIFO overflow (write attempt to full FIFO)

#define CHAN_STAT_RX_ERROR 0x00002000 // Receive error (combines above 5 errors)

 Embedded Solutions Page 12 of 17

#define CHAN_STAT_PKT_DONE 0x00004000 // Receive packet complete (EOP or EEP received)

#define CHAN_STAT_TICK_RCVD 0x00008000 // Tick-out received (valid timecode)

#define CHAN_STAT_WR_DMA_INT 0x00010000 // Write DMA interrupt (shown for info only)

#define CHAN_STAT_RD_DMA_INT 0x00020000 // Read DMA interrupt (shown for info only)

#define CHAN_STAT_WR_DMA_ERR 0x00040000 // Write DMA error (abort or descriptor error)

#define CHAN_STAT_RD_DMA_ERR 0x00080000 // Read DMA error (abort or descriptor error)

#define CHAN_STAT_LINKED 0x00100000 // True if channel is successfully linked

#define CHAN_STAT_TX_PURGERR 0x00200000 // Transmitter purge error

#define CHAN_STAT_RX_PKTVLD 0x00400000 // Receive packet-length available to read

#define CHAN_STAT_INT_ACTIVE 0x00800000 // Enabled interrupt condition is active

#define CHAN_STAT_TM_DATA_MASK 0x3F000000 // Timecode data word (six bits)

#define CHAN_STAT_TX_AMT_LT 0x40000000 // Transmit FIFO almost empty (latched)

#define CHAN_STAT_RX_AFL_LT 0x80000000 // Receive FIFO almost full (latched)

#define CHAN_STAT_FIFO_MASK (CHAN_STAT_TX_FF_MT | CHAN_STAT_TX_FF_AMT | CHAN_STAT_TX_FF_FL |\

 CHAN_STAT_TX_FF_VLD | CHAN_STAT_RX_FF_MT | CHAN_STAT_RX_FF_AFL |\

 CHAN_STAT_RX_FF_FL | CHAN_STAT_RX_FF_VLD)

#define CHAN_STAT_LATCH_MASK (CHAN_STAT_PAR_ERR | CHAN_STAT_WR_DMA_ERR | CHAN_STAT_CRDT_ERR |\

 CHAN_STAT_DSCNCT | CHAN_STAT_RD_DMA_ERR | CHAN_STAT_RX_ERROR |\

 CHAN_STAT_ESC_ERR | CHAN_STAT_TX_AMT_LT | CHAN_STAT_PKT_DONE |\

 CHAN_STAT_RX_OVFL | CHAN_STAT_RX_AFL_LT | CHAN_STAT_TX_PURGERR)

#define CHAN_STAT_MASK (CHAN_STAT_WR_DMA_INT | CHAN_STAT_RX_PKTVLD | CHAN_STAT_LINKED|\

 CHAN_STAT_RD_DMA_INT | CHAN_STAT_FIFO_MASK | CHAN_STAT_LATCH_MASK |\

 CHAN_STAT_INT_ACTIVE | CHAN_STAT_TICK_RCVD | CHAN_STAT_TM_DATA_MASK)

IOCTL_SPWR_CHAN_WRITE_PACKET_LENGTH

Function: Writes a transmitter packet-length value to the packet-length FIFO.
Input: Packet length value (unsigned long integer)
Output: None
Notes: When operating in packet mode, no data will be sent until at least one value is
written to the transmit packet-length FIFO. Setting bit 31 high causes the transmitted
packet to be terminated with an EEP rather than an EOP.

IOCTL_SPWR_CHAN_READ_PACKET_LENGTH

Function: Reads a received packet-length value from the packet-length FIFO.
Input: None
Output: Packet length value (unsigned long integer)
Notes: Bits 30-0 are used for the packet-length (maximum of 2 G Bytes). Bit 31 is an
error flag that indicates that an error condition occurred during the reception of the
referenced packet or that it was terminated by an EEP. Reading the channel status will
indicate whether a connection error was detected.

 Embedded Solutions Page 13 of 17

IOCTL_SPWR_CHAN_SET_FIFO_LEVELS

Function: Sets the transmitter almost empty and receiver almost full levels for the channel.
Input: SPWR_CHAN_FIFO_LEVELS structure
Output: None
Notes: These values are initialized to the default values ⅛ FIFO and ⅞ FIFO
respectively when the driver initializes. The FIFO counts are compared to these levels
to set the value of the CHAN_STAT_TX_FF_AMT and CHAN_STAT_RX_FF_AFL
status bits and latch the CHAN_STAT_TX_AMT_LT and CHAN_STAT_RX_AFL_LT
latched status bits. Also if the control bits CHAN_CNTRL_URGNT_OUT_EN and/or
CHAN_CNTRL_URGNT_IN_EN are set, the FIFO level values are used to determine
when to give priority to an output or input DMA channel that is running out of data or
room to store data. See the definition of SPWR_CHAN_FIFO_LEVELS below.

typedef struct _SPWR_CHAN_FIFO_LEVELS {

 ULONG AlmostFull;

 ULONG AlmostEmpty;

} SPWR_CHAN_FIFO_LEVELS, *PSPWR_CHAN_FIFO_LEVELS;

IOCTL_SPWR_CHAN_GET_FIFO_LEVELS

Function: Returns the transmitter almost empty and receiver almost full levels for the channel.
Input: None
Output: SPWR_CHAN_FIFO_LEVELS structure
Notes: Returns the values set in the previous call.

IOCTL_SPWR_CHAN_GET_FIFO_COUNTS

Function: Returns the number of data words in the transmit and receive data and packet-
length FIFOs.
Input: None
Output: SPWR_CHAN_FIFO_COUNTS structure
Notes: There is one pipe-line latch for the transmit FIFO data and four for the receive
FIFO data. These are counted in the FIFO counts. That means the transmit count can
be a maximum of 16384 32-bit words and the receive count can be a maximum of
16387 32-bit words. The TxPktCount and RxPktCount fields can be a maximum of
1023 packet lengths. See the definition of SPWR_CHAN_FIFO_COUNTS below.

typedef struct _SPWR_CHAN_FIFO_COUNTS {

 ULONG TxCount; // Number of data words in the transmit data FIFO

 ULONG RxCount; // Number of data words in the receive data FIFO

 USHORT TxPktCount;// Number of values currently in the tx packet-length FIFO

 USHORT RxPktCount;// Number of values currently in the rx packet-length FIFO

} SPWR_CHAN_FIFO_COUNTS, *PSPWR_CHAN_FIFO_COUNTS;

 Embedded Solutions Page 14 of 17

IOCTL_SPWR_CHAN_RESET_FIFOS

Function: Resets one or both FIFOs for the referenced channel.
Input: SPWR_FIFO_SEL enumeration type
Output: None
Notes: Resets the transmit or receive FIFO or both depending on the input parameter
selection. Also resets the corresponding packet-length FIFO(s) and sets the
programmable almost full/empty levels back to the default values for the FIFO(s) that
were reset. See the definition of SPWR_FIFO_SEL below.

 // Used for FIFO reset call

typedef enum _SPWR_FIFO_SEL {

 SPWR_TX,

 SPWR_RX,

 SPWR_BOTH

} SPWR_FIFO_SEL, *PSPWR_FIFO_SEL;

IOCTL_SPWR_CHAN_WRITE_FIFO

Function: Writes a 32-bit data-word to the transmit FIFO.
Input: FIFO word (unsigned long integer)
Output: None
Notes: Used to make single-word accesses to the transmit FIFO instead of using DMA.

IOCTL_SPWR_CHAN_READ_FIFO

Function: Returns a 32-bit data word from the receive FIFO.
Input: None
Output: FIFO word (unsigned long integer)
Notes: Used to make single-word accesses to the receive FIFO instead of using DMA.

IOCTL_SPWR_CHAN_REGISTER_EVENT

Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned
from that call as the input to this IOCTL. The driver then obtains a system pointer to the
event and signals the event when a user interrupt is serviced. The user interrupt
service routine waits on this event, allowing it to respond to the interrupt. The DMA
interrupts do not cause this event to be signaled.

 Embedded Solutions Page 15 of 17

IOCTL_SPWR_CHAN_ENABLE_INTERRUPT

Function: Enables the channel master interrupt.
Input: None
Output: None
Notes: This command must be run to allow the board to respond to user interrupts.
The master interrupt enable is disabled in the driver interrupt service routine when a
user interrupt is serviced. Therefore this command must be run after each user
interrupt occurs to re-enable it.

IOCTL_SPWR_CHAN_DISABLE_INTERRUPT

Function: Disables the channel master interrupt.
Input: None
Output: None
Notes: This call is used when user interrupt processing is no longer desired.

IOCTL_SPWR_CHAN_FORCE_INTERRUPT

Function: Causes a system interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the PCI bus as long as the channel
master interrupt is enabled. This IOCTL is used for development, to test interrupt
processing.

IOCTL_SPWR_CHAN_GET_ISR_STATUS

Function: Returns the interrupt status read in the ISR from the last user interrupt.
Input: None
Output: Interrupt status value (unsigned long integer)
Notes: Returns the interrupt status that was read in the interrupt service routine of the
last interrupt caused by one of the enabled channel interrupts. The interrupts that deal
with the DMA transfers do not affect this value. The new field is true if the Status has
been updated since it was last read. See the definition of SPWR_CHAN_INT_STAT
below.

typedef struct _SPWR_CHAN_INT_STAT {

 ULONG Status;

 BOOLEAN New;

} SPWR_CHAN_INT_STAT, *PSPWR_CHAN_INT_STAT;

 Embedded Solutions Page 16 of 17

IOCTL_SPWR_CHAN_READ_TIME_CODE

Function: Returns the last time-code received and clears the tick received latched bit.
Input: None
Output: SPWR_CHAN_TIME_CODE structure
Notes: Returns the value of the time-code data byte last received in the Time field. The
New field will be set to TRUE if the time-code has not been previously read. Either by a
previous instance of this call or by an ISR responding to an enabled TICK_OUT
interrupt. See the definition of SPWR_CHAN_TIME_CODE structure below.

typedef struct _SPWR_CHAN_TIME_CODE {

 UCHAR Time;

 UCHAR Flags;

 BOOLEAN New;

} SPWR_CHAN_TIME_CODE, *PSPWR_CHAN_TIME_CODE;

Write

SpaceWire DMA data is written to the referenced I/O channel device using the write
command. Writes are executed using the Win32 function WriteFile() and passing in the
handle to the I/O channel device opened with CreateFile(), a pointer to a pre-allocated
buffer containing the data to be written, an unsigned long integer that represents the
size of that buffer in bytes, a pointer to an unsigned long integer to contain the number
of bytes actually written, and a pointer to an optional Overlapped structure for
performing asynchronous IO.

Read

SpaceWire DMA data is read from the referenced I/O channel device using the read
command. Reads are executed using the Win32 function ReadFile() and passing in the
handle to the I/O channel device opened with CreateFile(), a pointer to a pre-allocated
buffer that will contain the data read, an unsigned long integer that represents the size
of that buffer in bytes, a pointer to an unsigned long integer to contain the number of
bytes actually read, and a pointer to an optional Overlapped structure for performing
asynchronous IO.

 Embedded Solutions Page 17 of 17

Warranty and Repair

Dynamic Engineering warrants this product to be free from defects under normal use
and service and in its original, unmodified condition, for a period of one year from the
time of purchase. If the product is found to be defective within the terms of this
warranty, Dynamic Engineering's sole responsibility shall be to repair, or at Dynamic
Engineering's sole option to replace, the defective product.

Dynamic Engineering's warranty of and liability for defective products is limited to that
set forth herein. Dynamic Engineering disclaims and excludes all other product
warranties and product liability, expressed or implied, including but not limited to any
implied warranties of merchantability or fitness for a particular purpose or use, liability
for negligence in manufacture or shipment of product, liability for injury to persons or
property, or for any incidental or consequential damages.

Dynamic Engineering’s products are not authorized for use as critical components in life
support devices or systems without the express written approval of the president of
Dynamic Engineering.

Service Policy

Before returning a product for repair, verify as well as possible that the driver is at fault.
The driver has gone through extensive testing and in most cases it will be “cockpit error”
rather than an error with the driver. When you are sure or at least willing to pay to have
someone help then call the Customer Service Department and arrange to speak with an
engineer. We will work with you to determine the cause of the issue. If the issue is one
of a defective driver we will correct the problem and provide an updated module(s) to
you [no cost]. If the issue is of the customer’s making [anything that is not the driver]
the engineering time will be invoiced to the customer. Pre-approval may be required in
some cases depending on the customer’s invoicing policy.

Out of Warranty Repairs

Out of warranty support will be billed. The current minimum repair charge is $125. An
open PO will be required.

For Service Contact:

Customer Service Department
Dynamic Engineering
150 DuBois, Suite C Santa Cruz, CA 95060
(831) 457-8891 Fax (831) 457-4793
support@dyneng.com

All information provided is Copyright Dynamic Engineering.

mailto:support@dyneng.com

